High-order difference methods for Cartesian and curvilinear grids

Bill Henshaw

Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory, Livermore, CA, USA.

BOUT++ 2013 Workshop,
Livermore Valley Open Campus, Livermore, CA, USA, September 4, 2013.
LLNL-PRES-643398
Acknowledgments.

Primary collaborators:

Jeff Banks
(LLNL)

Kyle Chand
(LLNL)

Don Schwendeman
(RPI)

Supported by:

ASCRA
Department of Energy, Office of Science, ASCR Applied Math Program.

LDRD
LLNL: Laboratory Directed Research and Development (LDRD) program.

NSF
National Science Foundation.
Topics to be covered

1. Overture: overlapping grids for complex geometry
2. Applications using high-order methods
 1. Maxwell’s equations for time domain electromagnetic applications
 2. Incompressible Navier-Stokes equations for turbulence flows
3. High-order difference methods (conservative, non-conservative, compact)
4. Boundary conditions for high-order schemes.
The Overture project is developing PDE solvers for a wide class of continuum mechanics applications.

Overture is a toolkit for solving PDE’s on overlapping grids and includes CAD, grid generation, numerical approximations, AMR and graphics.

The **CG** (Composite Grid) suite of PDE solvers (cgcns, cgins, cgmx, cgsm, cgad, cgmp) provide algorithms for modeling gases, fluids, solids and E&M.

Overture and CG are available from www.llnl.gov/CASC/Overture.

We are looking at a variety of applications:

- wind turbines, building flows (cgins),
- explosives modeling (cgcns),
- fluid-structure interactions (e.g. blast effects) (cgmp+cgcns+cgsm),
- conjugate heat transfer (e.g. NIF holhraum) (cgmp+cgins+cgad),
- damage mitigation in NIF laser optics (cgmx).
What are overlapping grids and why are they useful?

Overlapping grid: a set of structured grids that overlap.

- Overlapping grids can be rapidly generated as bodies move.
- High quality grids under large displacements.
- Cartesian grids for efficiency.
- Smooth grids for accuracy at boundaries.
- Efficient for high-order methods.

Asymptotic Performance Principle for overlapping grids

As grids are refined, total CPU/memory usage can approach that of a Cartesian grid.
Approximate form of errors: \((h_p = \text{grid-spacing}, \ T = \text{time})\)

\[
E = C_2 \ T \ h_p^2, \quad \text{Error in a 2nd-order accurate scheme,}
\]

\[
E = C_4 \ T \ h_p^4, \quad \text{Error in a 4th-order accurate scheme.}
\]

To match errors we need \(h_2^2 \approx h_4 \)

To match a 4th-order accurate scheme with \(N \) grid points, a second-order accurate scheme needs \(N^2 \) grid points.

Example: 4th-order: \(N = 10^3 \approx \) second-order: \(N = 10^6 \) grid points!
Maxwell’s equations are solved in second-order form

Maxwell’s equations:

\[\epsilon \mu \partial_t^2 \mathbf{E} = \Delta \mathbf{E} + \nabla \left(\nabla \ln \epsilon \cdot \mathbf{E} \right) + \nabla \ln \mu \times \left(\nabla \times \mathbf{E} \right) - \mu \partial_t \mathbf{j}\]

\[\epsilon \mu \partial_t^2 \mathbf{H} = \Delta \mathbf{H} + \nabla \left(\nabla \ln \mu \cdot \mathbf{H} \right) + \nabla \ln \epsilon \times \left(\nabla \times \mathbf{H} \right) + \epsilon \nabla \times \left(\frac{1}{\epsilon} \mathbf{j} \right)\]

Advantages of the second-order form:

- No need for a staggered grid since the operator \(\Delta\) is elliptic.
- One can solve for \(\mathbf{E}\) alone.

Key ingredients of the Cgmx Maxwell solver.

1. Fourth-order accurate space-time scheme with large (CFL=1) time step.
2. Symmetric difference approximations for curvilinear grids are energy conserving.
3. Compatibility based numerical boundary and interface conditions are more stable than one-side approximations.
4. Nearly as efficient as a Cartesian grid method.

- EM scattering from a dielectric cylinder.
- Scattering from a dielectric sphere.
- Accelerator HOM coupler.
- Charge pulse in an accelerator.
Overlapping grids are used to cover the domain. The grids usually consist of narrow boundary fitted curvilinear grids and one or more large Cartesian background grids.

Where grids overlap the solutions are interpolated using a 5th-order interpolation stencil with 5^d points in d–dimensions (with a double fringe of interpolation points).

The vector wave equation is discretized in time using a modified-equation approach, giving, for example, the fourth-order accurate scheme

$$U^{n+1} - 2U^n + U^{n-1} = (c\Delta t)^2 \Delta_4 h U^n + \frac{(c\Delta t)^4}{12} \Delta_{2h}^2 U^n$$

Here Δ_{mh} is a m^{th}-order approximation to the Laplace operator. This scheme is very efficient and allows a large ($cfl=1$) time step.
$Lw = \nabla \cdot (a \nabla w)$.

Standard finite difference approximations are based on transforming the equations from physical space x to computational space r,

$$Lw = a(r) \frac{\partial r_n}{\partial x_i} \frac{\partial r_m}{\partial x_i} \frac{\partial^2 w}{\partial r_m \partial r_n} + \frac{\partial r_n}{\partial x_i} \left\{ a(r) \frac{\partial}{\partial r_n} \left(\frac{\partial r_m}{\partial x_i} \right) + \frac{\partial a}{\partial r_n} \frac{\partial r_m}{\partial x_i} \right\} \frac{\partial w}{\partial r_m}.$$ \hspace{1cm} (1)

The symmetric approximations are based on the self-adjoint form,

$$Lw = \frac{1}{J} \sum_{m=1}^{d} \sum_{n=1}^{d} \frac{\partial}{\partial r_m} \left(A^{mn} \frac{\partial w}{\partial r_n} \right), \quad A^{mn} = kJ \sum_{\mu=1}^{d} \sum_{\nu=1}^{d} \frac{\partial r_m}{\partial x_\mu} \frac{\partial r_n}{\partial x_\nu},$$

Convergence rates (max norm errors) in computing the Laplacian on a smooth non-orthogonal grid. FD$_m$ = standard approximation order m, SD$_m$ = symmetric approximation of order m. Bill Henshaw (LLNL)
The idea is approximate the derivative at the cell mid-point,

\[\frac{\partial w}{\partial r}(r \pm h/2) = D_{\pm} \left[1 + \sum_{n=1}^{m} \alpha_n h^{2n} (D^+ D^-)^n \right] w(r \pm h/2) + O(h^{2m+2}), \]

and use this to approximate the second-derivative in conservation form:

\[\frac{\partial}{\partial r} \left(a \frac{\partial}{\partial r} \right) = D_+ (a_{i-1/2}^{(m)} D_-) - \frac{h^2}{24} [D_+ (a_{i-1/2}^{(m-2)} D_+ D_-) + D_-^2 (a_{i-1/2}^{(m-2)} D_-)] + \frac{h^4}{24^2} [D_+^2 D_- (a_{i-1/2}^{(m-4)} D_+ D_-)] + \frac{3h^4}{640} [D_+ (a_{i-1/2}^{(m-4)} D_+ D_-^3) + D_-^3 (a_{i-1/2}^{(m-4)} D_-)] \ldots \]

where \(D_+ w_i = (w_{i+1} - w_i)/h \), and \(D_- w_i = (w_i - w_{i-1})/h \), and

\[a_{i-1/2}^{(2)} = \frac{1}{2} (a_i + a_{i-1}), \quad a_{i-1/2}^{(4)} = \frac{9}{16} (a_i + a_{i-1}) - \frac{1}{16} (a_{i+1} + a_{i-2}), \]

The resulting schemes are compact, symmetric and lead to energy conservation.
CBC: Compatibility boundary conditions
Numerical boundary conditions for high-order approximations

High-order accurate finite difference schemes with wide stencils need NBC’s. CBC’s are more stable and accurate than one-side approximations.

\[E_{tt} = E_{xx} + E_{yy} \quad x \in \Omega = [0, 1]^2 \]

PEC (perfect electrical conductor) boundary at \(x = 0 \):

\[
E_y(0, y, t) = 0 \quad \text{(from } n \times E = 0),
\]

\[
\partial_x E_x(0, y, t) = 0 \quad \text{(from } \nabla \cdot E = 0).\]

Taking time derivatives of the above and using the equations:

\[
\partial_x^{2m} E_y(0, y, t) = 0 \quad m = 0, 1, 2, 3, \ldots
\]

\[
\partial_x^{2m+1} E_x(0, y, t) = 0 \quad m = 0, 1, 2, 3, \ldots
\]

These CBC’s are used on the boundary instead of one-sided approximations. The extension to curvilinear geometry is nontrivial.
We have been developing high efficiency algorithms for modeling

1. incompressible flows and moving geometry,
2. fast solution of elliptic boundary value problems in complex geometry,

The approach is based on

1. overlapping grids for flexible representation of geometry,
2. high-order accurate algorithms,
3. approximate factored operators and compact schemes,
4. matrix free multigrid algorithms,
5. accurate treatment of boundary conditions,
6. fast parallel grid generation.
Approximate-factored/compact scheme and multigrid pressure solver

A parallel split-step solver is being developed based on:

1. Fourth-order accurate approximate-factored/compact time-stepping scheme for the momentum equations.
2. Fourth-order accurate multigrid solver for the pressure equation.
3. Fast overlapping grid generation for moving geometry.

Compact discretizations to derivatives

Approximation to $\partial u/\partial x$,

$$\alpha \left(\frac{\partial u}{\partial x} \right)_{i+1} + \left(\frac{\partial u}{\partial x} \right)_i + \alpha \left(\frac{\partial u}{\partial x} \right)_{i-1} = a \left(\frac{u_{i+1} - u_{i-1}}{2h} \right) + b \left(\frac{u_{i+2} - u_{i-2}}{4h} \right)$$

$\alpha = 0, \quad a = 4/3, \quad b = -1/3$: explicit 4th-order (5-pt)
$\alpha = 1/4, \quad a = 3/2, \quad b = 0$: compact 4th-order (3-pt)
$\alpha = 1/3, \quad a = 14/9, \quad b = 1/9$: compact 6th-order (5-pt)

Advantages: smaller stencil, smaller error constants

Disadvantages: requires solution of a tri-diagonal (penta-diagonal, ...) system, boundary conditions?

Approximate factorization & compact discretizations

A key point is maintaining accuracy at boundaries.

- Approximate factorization (AF) schemes offer larger timesteps with second order accuracy in time:

\[
(I + \frac{\Delta t}{2} (A + B))U^{n+1} = (I - \frac{\Delta t}{2} (A + B))U^n
\]

becomes

\[
(I + \frac{\Delta t}{2} A)(I + \frac{\Delta t}{2} B)U^{n+1} = (I - \frac{\Delta t}{2} A)(I - \frac{\Delta t}{2} B)U^n
\]

- Compact schemes can be integrated into the AF solves
- Special “combined” compact schemes have been developed:
 → reduce the number of factors

\[
(a \partial_r + b \partial_{rr}^2)u \rightarrow P^{-1}(D_r a + D_{rr} b)u + \text{corrections}
\]

→ preserve accuracy at boundaries
→ 4th and 6th order accuracy with a 5 point stencil
→ special penta-diagonal solvers that handle wider boundary stencils
1 High-order accurate approximations (HOA) are effective for wave propagation (e.g. EM) and problems with many scales (e.g. turbulence).

2 HOA work best on **smooth grids**.

3 Compatibility boundary conditions provide stable numerical boundary conditions.

4 Overlapping grids provide smooth grids for complex geometry.