Analysis of Different Responses of Ion and Electron in Six-Field Landau-Fluid ELM Simulations

C. H. Ma$^{1, 2}$, X. Q. Xu2, P. W. Xi$^{1, 2}$, T. Y. Xia3, A. Dimits2, M. V. Umansky2

1Fusion Simulation Center, School of Physics, Peking University, Beijing, China
2Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
3Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China

Presented at 2013 BOUT++ Workshop
Livermore, CA, September/2013

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and is supported by the China Scholarship Committee under contract NO.201206010101, as well as supported by the China Natural Science Foundation under Contract No.10721505.

LLNL-PRES-643194
1. Introduction
2. Physics Model
3. Simulation Result
 1) Effect of different parallel heat flux closures
 2) L_n/L_t scan
 3) Different response of ion and electron
 4) Effect of thermal force
4. Summary
Background

• H-mode
 ➢ Better power confinement for plasmas
 ➢ Edge transport barrier and pedestal region

• ELMs
 ➢ Periodic MHD events at H-mode pedestal;
 ➢ Damage to PFC;
 ➢ Affect confinement;

• Peeling-ballooning model
 ➢ Driven by combination of high pressure gradient and current
 ➢ Different linear instabilities, different types of ELMs.

P.B. Snyder, et.al Nucl. Fusion 47 (2007) 961
Landau fluid model can fill the gap between hot and cold boundary plasma.

Core region
- Temperature: high
- Collision: weak
- Model: gyro-kinetic

Boundary region
- Temperature: low
- Collision: strong
- Model: two fluid

Landau fluid model
- Two fluid model for ideal peeling-ballooning mode
- Using non-local transport closure to simulate kinetic effect on hot, collisionless region
6-field includes the effect of thermal conductivity and temperature profile

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-field</td>
<td>ϖ, A_\parallel, P</td>
<td>Peeling-balloonning model</td>
</tr>
<tr>
<td>6-field</td>
<td>$\varpi, A_\parallel, n_i, V_\parallel, T_i, T_e$</td>
<td>+Thermal conductivity</td>
</tr>
</tbody>
</table>

• 3-field:
 • Only peeling-balloonning model

• 6-field:
 • Thermal conductivity
 - Landau closure: collisionless wave-particle resonances
 - Flux limited heat flux: collisional transport and flux streaming
 • Effect of temperature profile $\rightarrow \eta_i = L_n / L_T$ scan
6-field Landau fluid model with parallel heat flux

Vorticity:
\[
\frac{\partial}{\partial t} \omega = -\left(\frac{1}{B_0} b \times \nabla_{\perp} \phi + V_{||} b \right) \cdot \nabla \omega + B^2 \nabla \left(\frac{J_{||}}{B} \right) + 2b \times \kappa \cdot \nabla P
\]
\[
- \frac{1}{2\Omega_i} \left[\frac{1}{B} b \times \nabla P_i \cdot \nabla \left(\nabla_{\perp}^2 \phi \right) - Z_i e B b \times \nabla n_i \cdot \nabla \left(\nabla_{\perp}^2 \phi \right)^2 \right]
\]
\[
+ \frac{1}{2\Omega_i} \left[\frac{1}{B} b \times \nabla \phi \cdot \nabla \left(\nabla_{\perp}^2 P_i \right) - \nabla_{\perp}^2 \left(\frac{1}{B} b \times \nabla \phi \cdot \nabla P_i \right) \right] + \mu_i \nabla_{||}^2 \omega
\]

Ion density:
\[
\frac{\partial}{\partial t} n_i = -\left(\frac{1}{B_0} b \times \nabla_{\perp} \phi + V_{||} b \right) \cdot \nabla n_i - \frac{2n_i}{B_0} b \times \kappa \cdot \nabla \phi - \frac{2}{Z_i e B} b \times \kappa \cdot \nabla P - n_i B \nabla_{||} \left(\frac{V_{||}}{B} \right)
\]

Ion parallel velocity:
\[
\frac{\partial}{\partial t} V_{||} = -\left(\frac{1}{B_0} b \times \nabla_{\perp} \phi \right) \cdot \nabla n_i - \frac{1}{m_i n_i} b \cdot \nabla P
\]

Ohm’s law:
\[
\frac{\partial}{\partial t} A_{||} = -\nabla_{||} \phi + \frac{\eta}{\mu_0} \nabla_{\perp}^2 A_{||} + \frac{1}{en_i} \nabla_{||} P_e + \frac{\epsilon B}{2Z_e} \nabla_{||} T_e - \frac{\eta_H}{\mu_0} \nabla_{||}^4 A_{||}
\]

Electron temperature:
\[
\frac{\partial}{\partial t} T_e = -\frac{2}{3} T_e \left[\left(\frac{2}{B} b \times \kappa \right) \cdot \left(\nabla \phi + \frac{1}{en_e} \nabla P_e + \frac{5k_B}{2e} \nabla T_e \right) + B \nabla \left(\frac{V_{||}}{B} \right) \right]
\]
\[
- \left(\frac{1}{B_0} b \times \nabla_{\perp} \phi + V_{||} b \right) \cdot \nabla T_e - \frac{2}{3n_i k_B} \frac{Z_i}{m_i} \left(T_e - T_i \right)
\]

Parallel heat flux

Parallel heat flux
Different balance pressure profile

- Simulations are based on the shifted circular cross-section toroidal equilibria (cbm18_den6) generated by the TOQ code*.

Landau damping closure

\[q_{\parallel i} = -n_0 \sqrt{\frac{8}{\pi}} v_{T_{\parallel i}} \frac{ik_{\parallel} k_B T_i}{|k_{\parallel}|} \]
\[q_{\parallel e} = -n_0 \sqrt{\frac{8}{\pi}} v_{T_{\parallel e}} \frac{ik_{\parallel} k_B T_e}{|k_{\parallel}|} \]

✓ Non-local thermal transport

classical thermal conductivities

\[q_{\parallel i} = -\kappa_{\parallel i} \nabla_{\parallel} k_B T_i \]
\[q_{\parallel e} = -\kappa_{\parallel e} \nabla_{\parallel} k_B T_e \]

Where

\[\kappa_{\parallel i} = \left(\kappa_{\parallel i}^{SH} + \kappa_{\parallel i}^{FS} \right)^{-1} \]
\[\kappa_{\parallel e} = \left(\kappa_{\parallel e}^{SH} + \kappa_{\parallel e}^{FS} \right)^{-1} \]

\[\kappa_{\parallel i} = 3.9n_i v_{th,i}^2 / \nu_i \]
\[\kappa_{\parallel e} = 3.2n_e v_{th,e}^2 / \nu_e \]

✓ Classical heat flux

Spitzer-Harm

Flux streaming

Classical heat flux

Non-local thermal transport
Landau closure has more damping effect on linear growth rate, but not very strong

- Both Landau closure and flux limited thermal conductivity has stabilizing effect on peeling-ballooning modes;
- Landau closure has stronger stabilizing effect;
- Thermal conductivity doesn’t change the unstable island of modes.

Why the stabilizing effect from local/nonlocal parallel thermal conductive is not that strong?
• For ideal ballooning mode, dispersion relation is
\[\omega \left(\omega - i \chi_\parallel k_\parallel^2 \right) + \gamma_i^2 = 0 \]

• We get growth rate
\[\gamma = \frac{1}{2} \left(-\chi_\parallel k_\parallel^2 + \sqrt{\chi_\parallel^2 k_\parallel^4 + 4 \gamma_i^2} \right) \]

• Parallel conductivity has a stabilizing effect on peeling ballooning mode

• Parallel conductivity should have no effect on rational surface which \(k_\parallel = 0 \) \(\Rightarrow \) Radial structure
Our simulations show consistent radial structure with theoretic expectation!

- Radial mode structure
 - Without parallel diffusion: smooth;
 - With Landau damping for flux limited thermal conductivity: peaked at rational surface.

<table>
<thead>
<tr>
<th></th>
<th>Rational surface</th>
<th>Irrational surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instability</td>
<td>Strong</td>
<td>Weak</td>
</tr>
<tr>
<td>Parallel damping</td>
<td>Weak</td>
<td>Strong</td>
</tr>
</tbody>
</table>

- The mismatch between instability and parallel diffusion reduces the damping effect on peeling ballooning modes.
Landau damping leads to smaller ELM size in nonlinear simulations than flux limited expression.

- Nonlinear result is similar as linear result;
- Landau damping closure has more damping effect on the turbulence transport phase of elm crash;
- Elm size with Landau closure is smaller than Elm size with flux limited heat flux;
Effect on rational surface during linear phase

- Electron temperature contour of nonlinear run
- Parallel heat flux has no effect on rational surface
- Trace of rational surface disappear in the turbulence state
Different L_n/L_t

- Keep the same pressure profile, change density and temperature;
- L_n/L_t scan:

<table>
<thead>
<tr>
<th>L_n/L_t</th>
<th>Height</th>
<th>tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.800</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.400</td>
<td>0.200</td>
</tr>
<tr>
<td>4</td>
<td>0.240</td>
<td>0.280</td>
</tr>
<tr>
<td>6</td>
<td>0.171</td>
<td>0.316</td>
</tr>
<tr>
<td>8</td>
<td>0.133</td>
<td>0.333</td>
</tr>
<tr>
<td>10</td>
<td>0.109</td>
<td>0.345</td>
</tr>
</tbody>
</table>
Damping effect is strong when Ln/L_T is large

- Keep pressure profile and local density and temperature profile fixed, change Ln/L_T
- Ln/L_T has small effect on peeling ballooning mode
- Parallel conductivity has small effect when Ln/L_T is small
\(L_n/L_T \) has little effect on growth rate spectrum

- \(L_n/L_T \) has small effect on the growth rate and spectrum;
- Small effect from diamagnetic term because of different density gradient profile.
Spreading is strong when L_n/L_T is large

- L_n/L_T has small effect on initial crash phase.
- Speed in spreading phase is large when L_n/L_T is large.
- When L_n/L_T is small, result with Landau closure has more damping effect on ELM size. When L_n/L_T is large, ELM size with Landau closure has faster spreading speed than flux limited case.
ELM has fast crash phase and slow perturbation spreading phase

- Ion perturbation has larger initial crash
- Electron provides the spreading
Ion perturbation has a large initial crash and electron perturbation only has spreading.
Dominant mode number changed in different phases
Electron has a positive phase shift with \(\phi \).
ExB drift term in electron temperature equation cause the spreading

- Drift velocity in electron equation is similar with spreading speed
- Drift wave instability cause the spreading
- Dissipation effect, (Landau damping, parallel thermal conductivity), destabilize the instability.

\[\frac{\partial \langle T_e \rangle}{\partial t} = - \frac{1}{B_0} \langle b \times \nabla \perp \phi \cdot \nabla T_e \rangle \]
Larger conductivity leads to the spreading for electron perturbation

$q_i = -\kappa_e \nabla_{||} T_i$

- With larger thermal conductivity, ion perturbation has same ELM size as electron perturbation.
Thermal force, when coupled with parallel heat flux, can destabilizes modes

- With Landau closure or flux limited diffusion: Thermal force has an unstable effect on modes;
- Without parallel diffusion: Thermal force has small effect on the linear growth rate of modes.
Summary

• Parallel conductivity term has stabilize effect on peeling-ballooning mode and can reduce elm size.

• Landau closure has more damping effect for the linear growth rate of peeling-ballooning mode.

• Spreading is caused by drift wave instability. Speed for electron perturbation is determined by ExB drift velocity which is large when ∇T_e is large.

• Different response of ion and electron in nonlinear ELM simulation is compared.