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First observation of ELM suppression by ICRH in EAST

In June 2018, the phenomenon that ELMs are completely suppressed by ICRH during H mode,
was first observed in EAST!, However, due to the complexity of the experimental environment, the
mechanism of ELM suppression by ICRH is still not very clear.
EAST#77741
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> Experiment:

v' During ICRH, ELMs are suppressed, and
pedestal coherent mode is enhanced,;

v Stored energy has a small increase.

> Goal:

Reveal the key physical mechanism of
ELM suppression by ICRH, and contribute to
the ELM control.

fom = 15~20 kHz I [1] X. J. Zhang, et al, Sci. China-Phys. Mech. Astron. 2022.




Outline

> Simulation results

O Effect of pedestal structure on ELM



Simulation setup
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» Simulation region:

0.8 < w < 1.05, covering the pedestal
and SOL.

» During ICRH:
Fitted profile T,, and n, increase, and the pedestal

o Data from ‘k-efit’

1 structure is changed.
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» Based on the P-B model, including
non-ideal physics effects:
.- Diamagnetic effect
- EXB drift
- Resistivity
- Hyper-resistivity
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> ELITE analysis:
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O ELITE: pedestalis located in unstable P-B region;
O BOUT++: y>0, the P-B mode is dominant;

v When ELM suppressed (5.1s), pedestal is unstable.




® Ratio of ELM energy loss (ELM size):
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® Electric field — flow balance:

@ Before ICRH: A\, ~ 3.4%;

During ICRH: @, v ~ 2.19%) EB)
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large ELM

€ The change of pedestal structure has
little impact on ELM suppression.
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> Simulation results

[0 Effect of RF sheath on ELM



RF sheath model

» Physical modelll:

 Potential: ¢, ~ T, » Large ¢, formed € During ICRH, there is an enhanced edge ExB

- H mode: large gradient of T, in the SOL shear flow induced by the RF sheath.

80 : 1 Ll L T T 1 T T T L 1 T L L T RF Sheath

s0-| 2D scatter a{\\

-| Outer mid-plane

0.85 0.9 0.95 1 1.05 0 0
N Y grid X grid

Smoothly connect the flow-balanced E, and the RF sheath E, through the separatrix.

[1] Gui, B., et al. (2018). Nuclear Fusion 58(2). 9
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O The RF sheath can reduce the linear growth rate, especially for low-n mode;

O ELM size is reduced from 2.1% to 0.36%, indicating that RF sheath plays a key role

in the ELM suppression by ICRH.
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Break large-scale filaments into small-scale turbulence

> Poloidal cross section: » Schematic Diagram:

'Flow ba]ance ' | RF sheath
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O The larger ExB shear rate induced by RF
sheath breaks up the original large-scale
(b) filaments into small-scale turbulence, which

15 2 2.5 15 2 25 can suppress ELM.
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Reduce amplitude, suppress radial expansion

» Mode structure of pressure:
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O With RF sheath, the amplitude is about half smaller;

O With RF sheath, the radial expansion is suppressed effectively.
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More high-n modes appear and stronger mode coupling

> Perturbed pressure: > Bi-spectral analysis:
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More high-n O There are more high-n modes and stronger

modes appearing mode coupling in the E case. 13




The window exists for ELM suppression by ICRH

> Scan of RF sheath potential: » Window of ELM suppression:
Suppression
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O A small sheath potential window exists for the ELM suppression by ICRH;

O wg,z too small: ballooning mode is dominant, and ELM can’t be suppressed well;

O w,; too large: peeling mode is triggered, and lead to a large ELM crash. y



Validation between simulation and experiment

> Experiment analysis: > U, measured by DBS:
EAST#77741
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O Relationship: when RF sheath potential increases, ELM is effectively suppressed;

O DBS: During ICRH, the shear velocity (U,) in SOL obviously increases, which is
consistent with the simulation result. 15



Validation between simulation and experiment

> Validation of RF sheath window:
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Statistical analysis of experiments:

O A positive correlation between ExB shear rate in SOL and RF sheath potential,
O The lower limit of RF sheath potential was found for ELM suppression;
O Due to the limitation of experiments, the upper limit has not been observed.
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Outline

» Summary
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Summary

. : ELMsize:3.4% :
Phenomenon: ELM can be suppressed by ICRH in EAST;

Differance of
Little impact of pedestal structure: Ag y ~ 3.4% — 2.1%; Pedestar'iﬁ‘trumure

Key factor — RF sheath: Ag y ~ 2.1% — 0.36%; -ELM size: 217

RF Sheath
The impact of RF sheath:
ELM size: 0.36%

» Reduce the linear growth rate and perturbed amplitude; | —mmm=emme=See y
» Larger ExB shear flow, break up the large-scale filaments;
» Stronger nonlinear mode coupling;

Scan the RF sheath potential:
» A small window of wg, g exists for full ELM suppression by ICRH,;
» We,g SMall: ballooning mode; wg,g large: peeling mode;
» The existence of window has been validated in the experiments.
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Why no ICRF heating effect is observed?

EAST#77741
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« Old ICRH: the heating effect of the ICRH is not obvious, and
the ion temperature has little change.

~ 7.5 ml, has a much higher

coupling loading. The coupling loading and heating efficiency
of the new ICRH are ~ 3-7 times greater than the old. 21



Simulation results of the CM
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Effect of CM on the ELM suppression
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O The strong correlation between CM intensity and ELM size;

O There is a threshold value of CM intensity for ELM suppression;
O The simulation is consistent with the experiment;

O There is a stronger mode coupling with CM.
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[Y.L. Li et al 2022 Nucl. Fusion 62 066018] 23



The effect of the impurity

The vorticity equation with background impurity is modified to
o (ﬂiubx V.o 1—“.;,) Ve 4 B2V, (ﬂ) bk W, T. Y. Xia, et al. US/EU Transport Task

o B

Force Workshop, Salem, MA, 2015
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@

The effect of the impurity

The background impurity can stabilize the
ballooning mode

The effects of background impurity (carbon): can be treated as the change of mass
density.
0.18 -
< 016 | Ideal MHD
% 0.14 If the density profiles is kept unchanged
g > The effects of impurity: decreasing the
S oos - e wiolmpurty low-n ballooning modes by ~14%.
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O Don’t show the effect of gyro-viscosity,
need more calculations;

O The more impurities, the smaller the
growth rate; 25
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