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Background

> J in pedestal mainly determined by n, T;, T .
» n, T profiles varies significantly during ELM.
> J is expected to have significant variation during ELM.

Li, Ren et al, PPCF 2013
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Background

» PB instability is one of physical mechanisms of ELM explosion.
> ], is source of peeling instability.

» Evolution of J; may also cause remarkable impact on ELM evolution &
turbulence transport.
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Background

» ELM size can be remarkably impacted by E,
» Significant change of E_ is observed during ELM burst

E. during ELM
Li YL, Xia TY et al., NF 2022 g‘gj
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Numerical implementation

> Due to k;, > k; (flute perturbation), poloidal derivation is ignored in
solving Laplace equation for n#0) components in BOUT++ simulation.

» It is Inappropriate for n=0 component.
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o Including poloidal terms

. 3. O : 200
—eT | 0. — &ﬂ 9. — Q'yza i i 150

?J_ =V — ?“ —€ I y + € z y E 0.7p8 e 1 2.5 .
Gy Gy £ 068 Y r 100

2 05 B
_ AT 2.0t -
1 0.3} )y i
Vis (q708) + (50,007 40, U007 +0.U07NA) S e, I,
o poloidal terms :

. 1 q B o

+(9702) + (3[31 {Jg**} +8,{Jg"} + 8. {Jg*}] az) T 8
E 0.7}aa= e

+2(g°0:0:) %g: *’ i : e

=(g7°82) + G*8, + (9*°92) + G*9, + 2 (g*0.0.) A N\ 150

0. i . b : -
{0 12 14 16 18 20 Yoiz14161820-> <0

Major radius [m] Major radius [m’




ot

at

BOUT++ 6filed-2fluid equation
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Numerical implementation

)
<,
‘e

» Solving n=0 component in BOUT++ six-field two-fluid simulation (Xia et al NF 2015)
» Spectral method (Fourier expansion) is used to separately solve each component.
» Original solver InvertLaplace is used for n#0 components.
» 2 dimensional iterative solver LaplaceXY is used for n=0 component.

> Evolution of n=0 J, ({J;) ) and E, ((E,)) can be included.
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Test for strong B device

» Preliminary simulation are carried out on equilibrium with strong
magnetic field (~4 T in pedestal) & current (~ 10°) & pressure (~ 15 kPa).

10'®
Br—= 450 [
Y = 0.89~1.05 12 ™ 400
Grid: Radlal(68) " \ 1 350
X Poloidal(64) o 10 1 300
1 @)
X Torolidal(65) E o 13 250
z |-
200
7 1 150
6 e 100
5 50 AS
10 20 30 40 50 60 10 20 30 40 50 60
Radial grid Radial grid
10°
450
-1 — — f_f!
1.5 \‘\. / 400
N 2 l."s / 350
g_zﬁ ‘I'._ / %SUD
Sé -3 ‘ = 250
[
Q 35 \ 200
] \ II
J -4 \ | 150
I‘. |
\ X=48 e
5 50 =
05 06 07 08 09 10 20 30 40 50 60 10 20 30 40 50 60

R/m

Radial grid

Radial grid

11



Test for strong B device

rms

Normalized P i

> Linear phase: (J,) has little variation, making little effect in linear phase.

» Nonlinear phase: (] ") changes significantly, affects nonlinear phase
evolution of perturbation.
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Test for strong B device

> With (J;) evolution, ELM size significantly decreased and comes to
saturation.

ELM size (energy loss)
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Test for strong B device

» Impact on turbulence transport : In nonlinear phase, magnetic flutter
flux becomes much lower with (] ") evolution.

Particle flux on outer mid plane
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Test for strong B device

> (J) is always nearly canceled with diamagnetic current in leading order.

» Without (] ”), diamagnetic current will be mainly canceled by B flutter
current, making it unreasonably high.

Jj J
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Test for strong B device <),

e,

» Magnetic flutter flux is expected to be small compared with the drift flux,
and used to be ignored in continuity eq. in 6f-2fluid code.

» For further investigation into the impact of (] ") on magnetic flutter flux
and particle transport, magnetic flutter terms are added in continuity eq..

Expression of transport coefficient Without B flutter (original code)
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Test for strong B device

» Evolution of n profiles are shown.

> Without (] "), B flutter flux is overestimated and will cause
unreasonable variation of the n profile.

> With (J), B flutter flux become ignorable.
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Test for EAST

» Further simulation on EAST
#69033 discharge.
» Type-111 ELM (3.9 s).
» Weaker B (~2T)
> Lower current (~ 10° A-m?)
» Lower pressure (~ 3 kPa)

EAST shot: #69033, I = 500 kA, gg5 ~ 5.7

(MW)

Lin, Xu et al, Phys. Lett. A 2022

Ne SMBI
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Test for EAST
» Initial profile: EAST#69033 (3.9 s)
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Test for EAST

» Evolution of profiles are similar to those of strong B cases.:
— Little effect in linear phase

— Significant impact on perturbation evolution in nonlinear phase

P on outer mid plane .
rms P Pressure(w.o. (] ")) Pressure(with (] ”)) (] ")
@(VPO)max
' ' C W o.01) o0
0.3 ——with (JH) o L.2f 0 12 T~ e

0.25F § 1F § 1F

g 02 =08} = os|

a7 0.15 Pt o6} o6}
AN £ £

0.1 R S04} S04}
7 Z Z

005 B 02 | 02 N

O0 500 1000 1500 2000 2500 O 0 '
0.8 0.8 0.85

Time (7, )

21



Test for EAST

» Influence on transport shows difference from the strong B case.
> Both with and without (J,), magnetic flutter flux remains at a low level.

> With (]}, B flutter flux becomes even larger at specific moment (strong
perturbation in E X B flux).
Particle flux on outer mid plane @ (VPy) nax
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Test for EAST

» Effect of polarization current should be considered.

» With strong B, & high P > With relatively small B, & P
» PC can be neglected » PC effect increases
» Strong DC effect » Weaker DC effect

» BC may mainly depend on PC

v, — _m dE Reduce in oL V- J=0=V(enZ,V,)=- -<J+ bXVP) ignorable
P Z,eB? di lower P B2
1 Ji1 bX V<P
e F ) e s fe G ) )
increase in |eZ-V v '>)|: s — B < 1<J1>> R A B‘ﬂUtter t
weaker B . z \ ’ By /| Polarization current (PC) Diamagnetic current (DC)

— |~
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23



Test for EAST

ELM size is shown in figure.

> With (] "), the “first burst” rapidly ends with lower energy loss compared to without

(J;) case.

> Both case reach about 7% in energy loss, inconsistent with type-I11 small ELM.

> Additional simulation with both (E.) & (/) included is carried out. Evolution of
ELM size is completely different. Needs further research.
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Summary

> Based on BOUT++ 6fied-2fluid code and LaplaceXY method, evolution of (J) is
contained in ELM simulation.

> (] ”) has little variation and cause little influence in linear phase. It varies significantly
and has remarkable impact on turbulence evolution in nonlinear phase.

» According to toroidally averaged current continuity equation
» With strong B & high P : (] ") will directly affect magnetic flutter flux.

> With weak B & low P : (]} affects little, while PC effect increases.

> Variation of (J;) has influence on evolution of energy loss. Instant collapse is reduced.
But saturation phase still has large energy loss.

» With both (] ”) and (E) included, ELM evolves completely different from previous
cases, needs further investigation.
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Thanks for your attention!!
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Boundary conditions

» Forn, T, ¢, ], v profile

> Neumann in core / Dirichlet in vaccum.

» For ¢

» Zero Laplace in radial boundaries.

> For @

» Dirichlet (with exponential sink) in radial boundaries.

28



Magnetic flutter flux in continuity equation

Continuity equation

Velocity components

E X B drift
Diamagnetic drift

Parallel velocity

V] - VE +Vd] +V||j

bxVgp
VE == B
v be@
a — q;nB
Vij=Vb

Particle flux

I'] = Tl]V] = Tl](VE + Vdi + V"i)
bxV¢ |bXxXVP
= le +

Magnetic flutter
HV)j flux

Particle flux is related
to type of particle

If not ignorable
Directly adding magnetic flutter flux is
inconsistent with quasi-neutral condition
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Magnetic flutter flux in continuity equation

Continuity equation

on,
ot

Particle flux

:_v'|:ni(VE+Vde+Vi)_

F] = Tl]V] = le(VE + Vd] + V"j + Vp])

bxV¢ bxVP, Magnetic flutter

For further simplification

Ion magnetic flutter flux is ignored

Vie > Vi

F] = Tl]V] = le(VE + Vd] + V”]' + Vp])
bxVgp

b xX VP,

In this model

» lon polarization flux is retained but
magnetic flutter flux is ignored.
Electron polarization flux is ignored but
magnetic flutter flux is retained.

Electron has significant magnetic flutter
transport due to its parallel velocity. And
it is mainly compensated by ion
polarization flux to avoid charge
separation.

Magnetic flutter

- flux

30



Magnetic flutter flux in continuity equation

Polarization velocity Vy =

b y (duj N V.m— Rj> w ;— Instability time scale
0. ~ J
Q dt myn; Y} 4——  Gyrofrequency

1
Qj~—01Vy, » Vye —> Reasonable to ignore in electron

mj
velocity but retain in ion
With ion polarization velocity y

on,

ani
ot =—=V-[n.(Vg+ Vg4 + Vlle)]

E =-V. [ni(VE + Vd] + V”j + Vpe)] =

After simplification

b
V-(ZienVy)=-V-(J,+ = X Vp)

Continuity equation

on,;
ot

J
=-V- |:ni(VE+Vde+Vi)_ Z‘e}
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Boundary condition for J,

» To avoid numerical instability.
> ], is masked in both sides of radial boundary with tanh function.
» For consistency with 1, relaxing method is used on ohm equation(like in 3field code).

» Masking is only made for n#0 component for difficulty in inverting laplace for n=0 .

2 b (relaw_j_wac)
O = ! 1 — tanl P = Poac
= — — Larlil —J Field3D Jtarget = (getdl (Jpar)) * mask jxid;
2 AI vac
sol — l B V"g al Pszitarget = imvert_laplace (Jtarget. apar flags, NULL) ;
L || — —T U J_L'LI =Ll =L wE LT Le L 2L, — R - 4
i target V—Q }farget B
Y = Vi \Hody /Bo L - n.2sk_J2 oe _ ask_jx1d) / re o
ddt (Fzi) += getAC((i(Fzi + Peitarget) / relax_ j_tconzt + ddt(Fszi))*(maszk j=xld - 1.));
W (1= 8) Vb + 6 (5 — ) /r,
E - = ( - ) E[] ||'ffjJ (% % /ijac
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Preliminary simulation on fine grid

» Currently numerical method is only stable for coarse grid.
» For finer grid, still on optimization.
» Evolution of ELM size is similar in larger time scale, but differ in rapid collapse.
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(] I ), (E..) separation

> (J;) is evolved from () component of ohm eq.. — needs V;(¢)
> By ordering : (Ey)(associated with V (¢)) can be neglected in drift velocity calculating.
» Thus (E,)(or V (¢)) and V\(¢)

> Evolve according to different physical mechanisms.

> Has different ordering.

> It's reasonable to decouple evolution of (E,) and (J). Effect of (J,) is separately
considered during ELM.

JH ~ 106 A/Il’l2

m ~ 1077 -m

-1
d R T 1 _ 0.71kg _ . E, = mnJy~ 10" V/m

e T = VD 2y v, P. v, T..
Ohm law ot B 17T [0 R encB | e : By Vo>V,
EOJ~EH_ ~ 10 V/m
) B,
1 0P, 4
E, ~ ne or 10* kV/m

E,>E,,
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(] I >, (E..) separation

> Evolution of (E,) is mainly based on background turbulence
> Any variation of () is from nonlinear effect of perturbation components.
> Without u, , (@) varies earlier than local perturbation strength.
> With u, , the evolution become synchronous.

> (J;) is almost synchronous with 7(P), balancing diamagnetic current.

Evolution of (@) & P.ms on outer mid plane (VPg)max (with/w.o. £;)  Evolution of (J,)&V(P) on outer mid plane (VP) yax
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