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Background
 𝑱𝑱∥ in pedestal mainly determined by 𝒏𝒏,𝑻𝑻𝒊𝒊,𝑻𝑻𝒆𝒆.
𝒏𝒏,𝑻𝑻 profiles varies significantly during ELM.
 𝑱𝑱∥ is expected to have significant variation during ELM.
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Wade M R, Burrell K H et al, PoP 2005

Li, Ren et al, PPCF 2013

Before ELM
After ELM

Current profiles
electron density electron temperature



Background
PB instability is one of physical mechanisms of ELM explosion.
 𝑱𝑱∥ is source of peeling instability.
Evolution of 𝑱𝑱∥ may also cause remarkable impact on ELM evolution & 

turbulence transport.
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P.B. Snyder et al, NF 2011



Wade M R, Burrell K H et al,  PoP 2005

Er during ELM

ELM size simulated by BOUT++ 
with different Er profile

Li YL, Xia TY et al., NF 2022

Background
ELM size can be remarkably impacted by Er

 Significant change of Er is observed during ELM burst 
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Due to 𝒌𝒌⊥ ≫ 𝒌𝒌∥ (flute perturbation), poloidal derivation is ignored in 
solving Laplace equation for n≠0 components in BOUT++ simulation.

 It is Inappropriate for n=0 component.

Numerical implementation
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BOUT++ 6filed-2fluid equation

Compressible 
terms

Parallel velocity 
terms

Gyro-viscosity Energy exchange

Electron Hall Thermal force

Energy flux Thermal conduction

[1] X. Q. Xu, et al, PoP 7, 1951 (2000); [2]  X.Q. Xu et al., 2008, Commun. Comput. Phys. 4, 949. [3] 
T.Y. Xia et al., 2013, Nucl. Fusion 53 073009. [4] T. Y. Xia et al., 2015, Nucl. Fusion 55, 113030.
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 Solving n=0 component in BOUT++ six-field two-fluid simulation (Xia et al NF 2015)
 Spectral method (Fourier expansion) is used to separately solve each component.
 Original solver InvertLaplace is used for n≠0 components.
 2 dimensional iterative solver LaplaceXY is used for n=0 component.

 Evolution of n=0 𝑱𝑱∥ ( 𝑱𝑱∥ ) and 𝑬𝑬𝑟𝑟 ( 𝑬𝑬𝑟𝑟 ) can be included.

Numerical implementation
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Seto, Xu et al, PoP 2019

Inverting test
−𝛻𝛻⊥2 �𝑃𝑃𝑖𝑖2𝐷𝐷1 = 𝛻𝛻⊥2 �𝜙𝜙2𝐷𝐷1
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Preliminary simulation are carried out on equilibrium with strong 
magnetic field (~ 4 T in pedestal) & current (~ 106) & pressure (~ 15 kPa).

Test for strong B device
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Separatrix：
X=48



Linear phase: 𝑱𝑱∥ has little variation, making little effect in linear phase.
Nonlinear phase: 𝑱𝑱∥ changes significantly, affects nonlinear phase 

evolution of perturbation.

Test for strong B device
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P𝐫𝐫𝐫𝐫𝐫𝐫 on outer mid plane 
@ 𝛁𝛁𝐏𝐏𝟎𝟎 𝐦𝐦𝐦𝐦𝐦𝐦

𝑡𝑡 = 700 𝜏𝜏𝐴𝐴

Pressure(with 𝑱𝑱∥ ) 𝑱𝑱∥Pressure(w.o. 𝑱𝑱∥ )

𝑡𝑡 = 225 𝜏𝜏𝐴𝐴



With 𝑱𝑱∥ evolution, ELM size significantly decreased and comes to 
saturation.

Test for strong B device
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ELM size (energy loss)



 Impact on turbulence transport : In nonlinear phase, magnetic flutter 
flux becomes much lower with 𝑱𝑱∥ evolution.

Test for strong B device
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Particle flux on outer mid plane
@ 𝛁𝛁𝐏𝐏𝟎𝟎 𝐦𝐦𝐦𝐦𝐦𝐦

with 𝑱𝑱∥

w.o. 𝑱𝑱∥



 𝑱𝑱∥ is always nearly canceled with diamagnetic current in leading order. 
Without 𝑱𝑱∥ , diamagnetic current will be mainly canceled by B flutter 

current, making it unreasonably high.

Test for strong B device
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Disappear w.o. (n=0) B flutter current

Mainly canceled by
B flutter

Diamagnetic currentPolarization current



Magnetic flutter flux is expected to be small compared with the drift flux, 
and used to be ignored in continuity eq. in 6f-2fluid code.

For further investigation into the impact of 𝑱𝑱∥ on magnetic flutter flux 
and particle transport, magnetic flutter terms are added in continuity eq..

Test for strong B device
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Zhang, Chen et al, PoP 2019

Without B flutter (original code)

With B flutter 

Expression of transport coefficient 

E×B drift flux
Magnetic flutter flx



Evolution of n profiles are shown.
Without 𝑱𝑱∥ , B flutter flux is overestimated and will cause  

unreasonable variation of the n profile.
With 𝑱𝑱∥ , B flutter flux become ignorable.

Test for strong B device
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with B flutter with B flutterw.o. B flutter w.o. B flutter

Without 𝑱𝑱∥ With 𝑱𝑱∥
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Further simulation on EAST 
#69033 discharge.
Type-III ELM (3.9 s).
Weaker B (~ 2 T)
Lower current (~ 105 A·m-2)
Lower pressure (~ 3 kPa)

Lin, Xu et al, Phys. Lett. A 2022
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Test for EAST



 Initial profile: EAST#69033 (3.9 s)

Test for EAST
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EAST
#69033

• region：ψ=0.8~1.08
• grid： radial(68)

×poloidal(64)
×toroidal(64)

𝑛𝑛,𝑇𝑇 profiles

current density pressure



Evolution of profiles are similar to those of strong B cases.:
– Little effect in linear phase
– Significant impact on perturbation evolution in nonlinear phase

Test for EAST
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P𝐫𝐫𝐫𝐫𝐫𝐫 on outer mid plane 
@ 𝛁𝛁𝐏𝐏𝟎𝟎 𝐦𝐦𝐦𝐦𝐦𝐦

Pressure(with 𝑱𝑱∥ ) 𝑱𝑱∥Pressure(w.o. 𝑱𝑱∥ )



 Influence on transport shows difference from the strong B case.
 Both with and without 𝑱𝑱∥ , magnetic flutter flux remains at a low level.
 With 𝑱𝑱∥ , B flutter flux becomes even larger at specific moment (strong 

perturbation in 𝑬𝑬 × 𝑩𝑩 flux).

Strong B EAST
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Particle flux on outer mid plane @ 𝛁𝛁𝐏𝐏𝟎𝟎 𝐦𝐦𝐦𝐦𝐦𝐦

Test for EAST
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Test for EAST

B flutter

∝ 1
𝐵𝐵2

ignorable

 Effect of polarization current should be considered.

Reduce in 
lower P

increase in 
weaker B

ignorable

 With relatively small B0 & P
 PC effect increases
 Weaker DC effect
 BC may mainly depend on PC

With strong B0 & high P
 PC can be neglected
 Strong DC effect

Diamagnetic current (DC)Polarization current (PC)
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Test for EAST
ELM size is shown in figure.

 With 𝑱𝑱∥ , the “first burst” rapidly ends with lower energy loss compared to without 
𝑱𝑱∥ case.

 Both case reach about 7% in energy loss, inconsistent with type-III small ELM.
 Additional simulation with both Er & 𝑱𝑱∥ included is carried out. Evolution of 

ELM size is completely different. Needs further research.
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Summary
 Based on BOUT++ 6fied-2fluid code and LaplaceXY method, evolution of 𝑱𝑱∥ is 

contained in ELM simulation.
 𝑱𝑱∥ has little variation and cause little influence in linear phase. It varies significantly 

and has remarkable impact on turbulence evolution in nonlinear phase.
 According to toroidally averaged current continuity equation
 With strong B & high P : 𝑱𝑱∥ will directly affect magnetic flutter flux.
 With weak B & low P : 𝑱𝑱∥ affects little, while PC effect increases.

 Variation of 𝑱𝑱∥ has influence on evolution of energy loss. Instant collapse is reduced.  
But saturation phase still has large energy loss.

 With both 𝑱𝑱∥ and 𝑬𝑬 included, ELM evolves completely different from previous 
cases, needs further investigation.



Thanks for your attention!!
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Backups

27
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Boundary conditions
 For n, T, 𝝓𝝓, 𝑱𝑱∥, 𝒗𝒗∥profile

 Neumann in core / Dirichlet in vaccum.

 For 𝝍𝝍
 Zero Laplace in radial boundaries.

 For 𝝕𝝕
 Dirichlet (with exponential sink) in radial boundaries.
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Magnetic flutter flux in continuity equation

𝜕𝜕𝑛𝑛𝑗𝑗
𝜕𝜕𝜕𝜕

= −𝛻𝛻 � [𝑛𝑛𝑗𝑗𝑽𝑽𝑗𝑗]

𝑽𝑽𝑗𝑗 = 𝑽𝑽𝐸𝐸 + 𝑽𝑽𝑑𝑑𝑑𝑑 + 𝑽𝑽∥𝑗𝑗

𝑽𝑽𝐸𝐸 =
𝒃𝒃 × 𝛻𝛻𝜙𝜙
𝐵𝐵

𝑽𝑽𝑑𝑑𝑑𝑑 =
𝒃𝒃 × 𝛻𝛻𝑃𝑃𝑗𝑗
𝑞𝑞𝑗𝑗𝑛𝑛𝑛𝑛

𝑽𝑽∥𝑗𝑗 = 𝑉𝑉∥𝒃𝒃

𝚪𝚪𝒋𝒋 = 𝑛𝑛𝑗𝑗𝑽𝑽𝑗𝑗 = 𝑛𝑛𝑗𝑗 𝑽𝑽𝐸𝐸 + 𝑽𝑽𝑑𝑑𝑑𝑑 + 𝑽𝑽∥𝑗𝑗

= 𝑛𝑛𝑗𝑗
𝒃𝒃 × 𝛻𝛻𝜙𝜙
𝐵𝐵

+
𝒃𝒃 × 𝛻𝛻𝑃𝑃𝑗𝑗
𝑞𝑞𝑗𝑗𝐵𝐵

+ 𝑉𝑉∥𝑗𝑗𝒃𝒃
Continuity equation 

Velocity components

𝑬𝑬 × 𝑩𝑩 drift

Diamagnetic drift

Parallel velocity

Particle flux

Particle flux is related 
to type of particle

If not ignorable
Directly adding magnetic flutter flux is 
inconsistent with quasi-neutral condition

Magnetic flutter
flux
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Magnetic flutter flux in continuity equation

Continuity equation

𝚪𝚪𝒋𝒋 = 𝑛𝑛𝑗𝑗𝑽𝑽𝑗𝑗 = 𝑛𝑛𝑗𝑗 𝑽𝑽𝐸𝐸 + 𝑽𝑽𝑑𝑑𝑑𝑑 + 𝑽𝑽∥𝑗𝑗 + 𝑽𝑽𝑝𝑝𝑗𝑗

= 𝑛𝑛𝑗𝑗
𝒃𝒃 × 𝛻𝛻𝜙𝜙
𝐵𝐵 +

𝒃𝒃 × 𝛻𝛻𝑃𝑃𝑒𝑒
𝑞𝑞𝑒𝑒𝐵𝐵

+ 𝑉𝑉∥𝑒𝑒𝒃𝒃
Particle flux Magnetic flutter

flux

For further simplification
Ion magnetic flutter flux is ignored

𝚪𝚪𝒋𝒋 = 𝑛𝑛𝑗𝑗𝑽𝑽𝑗𝑗 = 𝑛𝑛𝑗𝑗 𝑽𝑽𝐸𝐸 + 𝑽𝑽𝑑𝑑𝑑𝑑 + 𝑽𝑽∥𝑗𝑗 + 𝑽𝑽𝑝𝑝𝑗𝑗

≅ 𝑛𝑛𝑗𝑗
𝒃𝒃 × 𝛻𝛻𝜙𝜙
𝐵𝐵 +

𝒃𝒃 × 𝛻𝛻𝑃𝑃𝑒𝑒
𝑞𝑞𝑒𝑒𝐵𝐵

+
𝐽𝐽∥
𝑒𝑒 𝒃𝒃

𝑉𝑉∥𝑒𝑒 ≫ 𝑉𝑉∥𝑖𝑖

Magnetic flutter
flux

In this model
 Ion polarization flux is retained but 

magnetic flutter flux is ignored.
 Electron polarization flux is ignored but 

magnetic flutter flux is retained.

 Electron has significant magnetic flutter 
transport due to its  parallel velocity. And 
it is mainly compensated by ion 
polarization flux to avoid charge 
separation.
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Magnetic flutter flux in continuity equation

Polarization velocity 𝑽𝑽𝑝𝑝𝑝𝑝 =
𝑏𝑏
Ωj

×
𝑑𝑑𝒖𝒖𝑗𝑗
𝑑𝑑𝑑𝑑

+
𝛻𝛻 � 𝜋𝜋𝑗𝑗 − 𝑹𝑹𝑗𝑗
𝑚𝑚𝑗𝑗𝑛𝑛𝑗𝑗

~
𝜔𝜔
Ω𝑗𝑗
𝑉𝑉𝑗𝑗

Ω𝑗𝑗~ 1
𝑚𝑚𝑗𝑗
， 𝑽𝑽𝑝𝑝𝑝𝑝 ≫ 𝑽𝑽𝑝𝑝𝑝𝑝

Instability time scale

Gyrofrequency

Reasonable to ignore in electron
velocity but retain in ion

𝜕𝜕𝑛𝑛𝑖𝑖
𝜕𝜕𝜕𝜕 = −𝛻𝛻 � 𝑛𝑛𝑖𝑖 𝑽𝑽𝐸𝐸 + 𝑽𝑽𝑑𝑑𝑑𝑑 + 𝑽𝑽∥𝑗𝑗 + 𝑽𝑽𝑝𝑝𝑒𝑒 ≅

𝜕𝜕𝑛𝑛𝑒𝑒
𝜕𝜕𝜕𝜕 = −𝛻𝛻 � [𝑛𝑛𝑒𝑒(𝑽𝑽𝐸𝐸 + 𝑽𝑽𝑑𝑑𝑒𝑒 + 𝑽𝑽∥𝑒𝑒)]

With ion polarization velocity

After simplification

𝛻𝛻 � 𝑍𝑍𝑖𝑖𝑒𝑒𝑒𝑒𝑽𝑽𝑝𝑝𝑝𝑝 = −𝛻𝛻 � (𝑱𝑱∥ +
𝒃𝒃
𝐵𝐵 × 𝛻𝛻𝑝𝑝)

Continuity equation
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Boundary condition for 𝑱𝑱∥
 To avoid numerical instability.

 𝑱𝑱∥ is masked in both sides of radial boundary with tanh function.
 For consistency with 𝝍𝝍, relaxing method is used on ohm equation(like in 3field code).

 Masking is only made for n≠0 component for difficulty in inverting laplace for n=0 𝝍𝝍 .
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Preliminary simulation on fine grid
 Currently numerical method is only stable for coarse grid.
 For finer grid, still on optimization.
 Evolution of ELM size is similar in larger time scale, but differ in rapid collapse.
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𝑱𝑱∥ , 𝑬𝑬𝑟𝑟 separation
 𝑱𝑱∥ is evolved from component of ohm eq.. → needs 𝛁𝛁∥ 𝝓𝝓
 By ordering : 𝑬𝑬𝜃𝜃 (associated with 𝛁𝛁∥ 𝝓𝝓 ) can be neglected in drift  velocity calculating.
 Thus 𝑬𝑬𝑟𝑟 (or 𝛁𝛁⊥ 𝝓𝝓 ) and 𝛁𝛁∥ 𝝓𝝓

 Evolve according to different physical mechanisms.
 Has different ordering.

 It`s reasonable to decouple evolution of 𝑬𝑬𝑟𝑟 and 𝑱𝑱∥ . Effect of 𝑱𝑱∥ is separately 
considered during ELM.

Ohm law：



35

𝑱𝑱∥ , 𝑬𝑬𝑟𝑟 separation
 Evolution of 𝑬𝑬𝑟𝑟 is mainly based on background turbulence

 Any variation of is from nonlinear effect of perturbation components.
 Without 𝝁𝝁⊥ , 𝝕𝝕 varies earlier than local perturbation strength. 
 With 𝝁𝝁⊥ , the evolution become synchronous.

 𝑱𝑱∥ is almost synchronous with 𝛻𝛻 𝑃𝑃 , balancing diamagnetic current.

Evolution of 𝝕𝝕 & P𝐫𝐫𝐫𝐫𝐫𝐫 on outer mid plane 𝛁𝛁𝐏𝐏𝟎𝟎 𝐦𝐦𝐦𝐦𝐦𝐦 (with/w.o. 𝝁𝝁⊥) Evolution of 𝑱𝑱∥ &𝛁𝛁 P on outer mid plane 𝛁𝛁𝐏𝐏𝟎𝟎 𝐦𝐦𝐦𝐦𝐦𝐦
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