

Development of the turbulence-transport coupling simulation framework for the edge plasma

T.Y. Liu¹[†]

T.H. Huang¹, Y.L. Li², J. Guo¹, Y.C. Xu¹, S.F. Mao¹, M.Y. Ye¹

1 School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China

2 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China

2/17/2023

Motivation

It is essential to perform self-consistent turbulence-transport simulation of the edge plasma in predicting the performance of fusion devices

An efficient and flexible way:

- Coupling the turbulence (like BOUT++) and transport (like SOLPS-ITER) codes inside a framework with well
 - developed interfaces and acceleration algorithms

Turbulence-transport coupling simulation framework

A multiscale simulation framework is developed to build complex workflows

Components :

- 2 fundamental modules (TURBulence module and TRANSport module): basic file I/O interfaces and data processing routines
- 4 core modules: data transfer interfaces (INIT_TRANS and INIT_TURB) and code running drivers (RUN_TRANS and RUN_TURB)
- > PREPROCESS module: generate initial inputs for core modules based on user configurations
- > MAIN function: turbulence-transport coupling workflow using core modules

Spatial scale coupling

Due to the different spatial scales of turbulence and transport processes, the resolution of computing grid varies greatly among different codes. Thus, it is necessary to develop a grid interpolation algorithm

> Unstructured grid: based on triangulation algorithm

triangulation on SOLPS grid

- > Structured grid: based on Breadth-First Search (BFS) algorithm
- Use **flux-surface-aligned coordinate** to improve the accuracy of interpolation
- Use higher-order interpolation algorithm to improve the robust of simulation

grid interpolation under different coordinates

Structured grid interpolation

> BFS algorithm **SOLPS BOUT++ Elapsed time** Topology (per 100 times) grid grid grid point grid cell 68×64 8.3s **USN** 36×96 128×64 12.5sр p, 260×64 20.8s LSN 36×64 200×64 14.6s 'A'

- > Higher-order interpolation algorithm
- Use higher-order regular grid interpolation to define a smooth function F^{-1}
- Use BFS algorithm above and root-finding method to get function *F*

Temporal scale coupling

Different temporal scale coupling schemes can be implemented by designing different workflows using the component-based approach

Computation speedup for turbulence simulation :

- > Develop a quasi-steady state detection method to terminate the simulation
- > Use the state from the end of the previous iteration as the initial condition

Quasi-steady state detection

 $Coefficient of Variation \equiv \frac{Standard Deviation}{Mean}$

- When turbulence simulation reaches nonlinear quasi-steady state, CV falls within some small tolerance
- CV is calculated from the latest time-step groups, each group contains several time steps

Simulation setup

- Transport: SOLPS-ITER; Turbulence: BOUT++ 6-field model
- According to Zhang et al.'s work [1, 2], The steady state coupling workflow is validated based on EAST H-mode (Shot#56129 t=5551ms)

transport:

plasma profiles $n_i, T_i, T_e, J_{//}, \phi$ grid (radial×poloidal) 36 × 64

turbulence:

transport coefficients $D_i, V_r, \kappa_i, \kappa_e$ grid (radial×poloidal) 200 × 64

start from constant transport coefficients $D_i = 0.5, V_r = 0.0, \kappa_i = 1.0, \kappa_e = 1.0$

[1] D.R. Zhang, Y.P. Chen, X.Q. Xu, et al. Nuclear Fusion, 2020, 60(10).
[2] D.R. Zhang, Y.P. Chen, X.Q. Xu, et al. Physics of Plasmas, 2019, 26(1): 012508.

Transport coefficients

$$\tilde{q}_{\alpha}^{r} = \frac{5}{2} \left\langle n_{\alpha} \tilde{T}_{\alpha} \tilde{V}_{E}^{r} \right\rangle + \frac{5}{2} \left\langle n_{\alpha} V_{\alpha,//} \tilde{T}_{\alpha} \tilde{b}^{r} \right\rangle - \left\langle \kappa_{\alpha,//} \nabla_{//} T_{\alpha} \tilde{b}^{r} \right\rangle$$

<>: time and toroidal average

Profiles and transport coefficients

(OMP) were obtained

50

12

tendency of convergence

Variation:
$$V_{k} = \frac{1}{n} \sum_{j=1}^{n} |N_{j,k+1} - N_{j,k}|$$

The variation between the adjacent two iterations gradually decreases, showing the tendency of convergence

Validation with experiment

- A multiscale simulation framework is developed which integrates the simulation codes, data processing routines, data transfer interfaces and code running drivers.
- Based on the framework, the steady state coupling workflow for the edge plasma is developed using SOLPS-ITER and BOUT++.
- Based on the EAST experiment, the steady state coupling workflow shows the tendency of convergence and the computational divertor profiles of last iteration provide good match with measurement.
- A transient state or time-dependent coupling workflow has been developed based on this framework, which still need further research.

Thanks!

Steady state coupling workflow

