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SOLT3D is a physics model implemented in BOUT++ for 
turbulence and transport in tokamak SOL and divertor regions
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Approximations currently used in the SOLT3D model:

• Electrostatic - not including magnetic perturbations
• SOL and divertor plasma have very low plasma beta (except ELMs)
• Radial gradients are not steep (except H-mode pedestal)

• Rectified edge plasma geometry – i.e., toroidal slab w/ branch-cuts
• Simplifies treatment of metric coefficients etc.
• Still, captures branch-cut topology essential for edge plasma
• Sufficient for most issues related to SOL/divertor turbulence and transport
• Makes easy connection with analytic theory



SOLT3D physics model includes six dynamic fields:
Ni,v, Te, Ti, V||i, Nn
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Poloidal BC: sheath, or zero || gradients for fluctuating quantities

Algebraic relations

Dynamic equations



Standard neutral gas physics is implemented in SOLT3D
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Neutral momentum equation reduced to neutral diffusion equation

=>

Reaction rates

• Ionization Riz = <sv>iz = (NRL formulary) 

• Charge-exchange rate Rcx = <sv>cx ; constant cross-section  scx = 7x10-19 m2

Classical ionization cross-section36 for any atomic shell j

(11) σi = 6 × 10−14bjgj(x)/Uj
2 cm2.

Here bj is the number of shell electrons; Uj is the binding energy of the ejected
electron; x = ε/Uj , where ε is the incident electron energy; and g is a universal
function with a minimum value gmin ≈ 0.2 at x ≈ 4.

Ionization from ion ground state, averaged over Maxwellian electron distribu-
tion, for 0.02 <∼ Te/E

Z
∞

<∼ 100 (Ref. 35):

(12) S(Z) = 10−5 (Te/E
Z
∞)1/2

(EZ
∞)3/2(6.0 + Te/EZ

∞)
exp

(
−

EZ
∞

Te

)
cm3/sec,

where EZ
∞ is the ionization energy.

Electron-ion radiative recombination rate (e + N(Z) → N(Z − 1) + hν)
for Te/Z

2 <∼ 400 eV (Ref. 37):

(13) αr(Z) = 5.2 × 10−14Z

(
EZ

∞
Te

)1/2 [
0.43 +

1

2
ln(EZ

∞/Te)

+0.469(EZ
∞/Te)

−1/3

]
cm3/sec.

For 1 eV < Te/Z
2 < 15 eV, this becomes approximately35

(14) αr(Z) = 2.7 × 10−13Z2Te
−1/2 cm3/sec.

Collisional (three-body) recombination rate for singly ionized plasma:38

(15) α3 = 8.75 × 10−27Te
−4.5 cm6/sec.

Photoionization cross section for ions in level n, l (short-wavelength limit):

(16) σph(n, l) = 1.64 × 10−16Z5/n3K7+2l cm2,

where K is the wavenumber in Rydbergs (1 Rydberg = 1.0974 × 105 cm−1).

55

GN = -D grad(nN)
Dn = lcxV ti

𝜕tNn= Dn∇2 Nn - R!"NiNn



SOLT3D treatment of the geometry: 
rectified edge model with branch-cuts
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• Rectified edge model w/ branch-cuts• Toroidal slab

• Toroidal B field ~ 1/R
• Poloidal B field taken as Bpol(R), no singularity at X-points
• Rectified edge plasma setup simplifies problems with Reynolds stress Er



SOLT3D model supports the bulk of physics essential for 
plasma instabilities, turbulence, and transport in SOL and divertor 
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• Linear waves and instabilities
- Resistive-drift, Resistive-ballooning, Sheath-driven instability, Ion acoustic 

mode
• Nonlinear phenomena

- Blobs, Turbulence
• Atomic physics

- Neutral collisional transport, Plasma-neutral interactions

• Extensive verification has been carried out, with fully consistent results
• Linear tests - Drift-resistive ballooning mode (DRBM), Conducting wall mode 

(CWM) instability, Acoustic wave, Neutral gas diffusion
• Nonlinear tests - Plasma blobs, Parallel heat conduction w/ sheath BC, 

Turbulence in LAPD



SOLT3D results for Drift-Resistive-Ballooning Mode instability
match analytic growth rates
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Drift-Resistive-Ballooning Instability in SOLT3D 

• DRBM is the main plasma 
instability for SOL and 
divertor

• DRBM model can include 
analytically corrections due to

- Neutrals
- FLR
- Parallel heat conduction 

• Those corrections have been 
also verified in the code



SOLT3D results for plasma blobs match previous simulations
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Normalized blob size is
the figure of merit

SOLT3D results

• For small blobs, d<<1 KH mushroom breakup,
• For large blobs, d>>1 interchange breakup
• Consistent with previous published work1

1Krasheninnikov, Myra et al., J. Plas. Phys. (2008), vol. 74, part 5, p. 679

d<<1 

d>>1 



SOLT3D application to L-mode-like edge plasma in 
medium size tokamak
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• Axisymmetric Ni0 from UEDGE • Axisymmetric Te0 from UEDGE

• Toroidally symmetric edge transport code UEDGE provides background plasma state
• Not evolving toroidally-average plasma profiles of Ni, V||i, Te,i in these simulations
• In the simulation model dropping (for now) a few terms that are presumed small

Ni0 [m-3] Rad. prof. (top, bot, mid)

R [m]R [m]

Z 
[m

]

Te0 [eV] Rad. prof. (top, bot, mid)

R [m]R [m]

Z 
[m

]



SOLT3D simulations show large fluctuations of 
plasma parameters at the midplane and at the plates
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• Ni fluctuations 50-100% • Te fluctuations 50-100%

Time-average RMS<Ni>/Ni0 Rad. prof. (top, bot, mid)

R [m]R [m]

Z 
[m

]

Time-average RMS <Te>/Te0 Rad. prof. (top, bot, mid)

R [m]R [m]

Z 
[m

]

• Fluctuations growth comes to saturation due to the Reynolds stress generated 
zonal flows and other nonlinearities in the equations



SOLT3D simulations show large fluctuations of 
plasma fluxes on target plates
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• G||i fluctuations on plates 50-100% • q||e fluctuations on plates 50-100%

Time-average RMS <Γ||i>/Γ||i0 Rad. prof. (top, bot, mid)

R [m]R [m]

Z 
[m

]

Time-average RMS <q||e>/q||e0 Rad. prof. (top, bot, mid)

Z 
[m

]

R [m]R [m]

• Plasma fluxes on the plate calculated from fluctuations of Ni and Te, Ti (Mach=1 condition)



Large SOL/divertor fluctuations in SOLT3D simulations are 
consistent with experimental data from tokamaks
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• C-Mod 
- 25-50% fluctuations for ne, Te at the midplane [Kube 2019]; 100% fluctuations of 

ne, Te in far SOL, [LaBombard 2001]
• DIII-D 

- 50% fluctuations for ne, Te at the midplane [Rudakov 2002]
• NSTX

- 50-100% fluctuations for ne, eF/Te at the midplane [Boedo 2014]
• JET

- 10-30% fluctuations for Jsat at the target plate [Garcıa-Cortes 1996]
• KSTAR

- 30-40% fluctuations for Jsat at the midplane [Garcıa 2017]
• JT-60

- 20-100% fluctuations for Jsat in the divertor [Tanaka 2009]

Kube et al., NME 18, 193–200 (2019); LaBombard et al., Phys. Plasmas, v. 8, n. 5, (2001); Rudakov et al., PPCF 44, 
p717 (2002); Boedo et al., Phys. Plasmas, 21, 042309 (2014); Garcıa-Cortes et al., Plasma Phys. Control. Fusion 38 
(1996) 2051–2062; Garcia et al. Nucl. Mater. Energy 12 (2017) 36–43; Tanaka et al., Nucl. Fusion 49 (2009) 065017 

In the experiment, edge plasma fluctuations are generally measured in tens of %, or 
more, depending on the location and core plasma parameters



Large fluctuations (tens of %) of plasma parameters and fluxes on 
PFC may lead to significant quantitative effects for PMI

13Figure from Sackers et al., Physics of Plasmas 29, 043511 (2022)

• Material sputtering rate by ions 
is strongly sensitive to ion 
impact energy

• Neglecting plasma fluctuations 
on PFC may lead to order of 
magnitude errors in sputtering 
yield

• Axisymmetric models (UEDGE, 
SOLPS) miss this effect 
completely

Sputter yield of W by Ar ions



Large SOL/divertor fluctuations lead to intrinsic “noise” in
axisymmetric tokamak edge transport modeling
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• Edge-transport models (UEDGE, SOLPS etc.) operate w/ toroidally-average quantities
• Presence of turbulent fluctuations introduces errors in all nonlinear relations

• For example, toroidally-average 
pressure

𝑃 = (𝑛0+ 𝑛1)(𝑇0+ 𝑇1) =
𝑛0𝑇0+ 𝑛1𝑇1

Here,
𝑃 = toroidal average P
𝑛0 = axisymmetric n
𝑛1 = non-axisymmetric n

Realistic levels of edge plasma turbulent fluctuations (tens of %) give rise to errors on the 
order of unity for standard toroidally-symmetric edge transport modeling

Time-average <NiTe>/(Ni0 Te0) Rad. prof. (top, bot, mid)

R [m]R [m]

Z 
[m

]



Implications of fluctuations for standard 2D edge plasma modeling
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• Standard 2D edge plasma models (UEDGE, SOLPS, etc.) use the assumptions:
• Collisional plasma (Braginskii)
• Axisymmetric plasma and BC
• Radial transport ad-hoc in form of effective Chi, D

• Accuracy of edge plasma models is intrinsically limited 
• Fluctuations introduce errors in axisymmetric plasma equations

• 2D models match experimental data within a factor ~2 but not better
• Why?

• The matching error does not improve with collisionality
• Collisional assumption is not the problem

• One needs to be careful making predictions & designs based on 2D edge models
• Should account for error-bars, at least a factor of ~2

• Coupling of edge turbulence and transport
• Not enough to provide Chi, D from a turbulence model



Accounting for large SOL/divertor fluctuations may explain 
some long-standing puzzles in tokamak edge plasma modeling
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• Toroidally-average ionization source 𝑆#$ = 𝑛#% + 𝑛#& 𝑛'% + 𝑛'& 𝑅#$ 𝑇(% + 𝑇(&
• Based on SOLT3D simulations, ionization source 𝑆#$ ~ 2 𝑆#$,%
• Edge plasma fluctuations explains “radiation shortfall”

Time-average (<Siz>/Siz0)-1 Rad. prof. (top, bot, mid)

R [m]R [m]

Z 
[m

]

“Radiation shortfall”

• All major 2D edge codes 
(UEDGE, SOLPS, EDGE2D) 
underpredict total divertor 
radiation by a factor of ~2

• In L-mode and H-mode
• In hydrogen plasma and in 

helium plasma
• Points to some generic 

feature/deficiency of 2D 
modeling

• Fluctuations!

M. Groth, APS-DPP 2014
J. Canik, APS-DPP 2016



Discussion & Summary
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• SOLT3D is a fluid model for SOL and divertor plasma turbulence, implemented in 
BOUT++ framework

• Using Braginskii-based fluid equations for six dynamic variables Ni,v, Te, Ti, V||i, Nn
using electrostatic approximation, in rectified edge-plasma domain

• SOLT3D reproduces a range of linear plasma instabilities relevant to tokamak edge, 
comparison with some existing nonlinear results demonstrates consistency 

• SOLT3D produces plasma turbulence characteristics that appear generally consistent 
with experimental measurements in tokamak edge (at least for L-mode), 

- realistic amplitude and spatial dependence of  fluctuations
- realistic plasma fluxes on material surfaces
- expected Bohm-like effective radial D,c

• Inferred cross-correlations of fluctuating quantities from SOLT3D simulations imply a 
significant level of intrinsic “noise” in axisymmetric plasma modeling, introducing 
errors on the order of unity


