Investigation of the origin of multi-scale MHD/turbulence and their role in setting the divertor heat flux widths for DIII-D wide-pedestal quiescent H-mode using BOUT++

#### Zeyu Li<sup>1,\*</sup>

Xi Chen<sup>1</sup>, P. H. Diamond<sup>2</sup>, X. Xu<sup>3</sup>, X. Qin<sup>4</sup>, K. H. Burrell<sup>2</sup>, H. Wang<sup>1</sup>, D. Ernst<sup>5</sup>, G. Yu<sup>6</sup>, B. Zhu<sup>3</sup>, N. Li<sup>3</sup>, G. R. McKee<sup>4</sup>, Z. Yan<sup>4</sup> and DIII-D Team

<sup>1</sup>General Atomics
<sup>2</sup>University of California, San Diego
<sup>3</sup>Lawrence Livermore National Laboratory
<sup>4</sup>University of Wisconsin-Madison
<sup>5</sup>Massachusetts Institute of Technology
<sup>6</sup>University of California, Davis

\* lizeyu@fusion.gat.com

Present at BOUT++ workshop 2023 Jan. 10<sup>th</sup>, 2023

Work supported by US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-SC0017992, DE-SC0019352, DE-FG02-08ER54999, DE-AC02-09CH11466 and LLNL-PRES-828728







- Introduction of wide-pedestal QH mode (WPQH)
- Identification of the broadband turbulence in WPQH
- SOL: Divertor heat flux width and pedestal turbulence
- Summary

| • Experiment                     |
|----------------------------------|
|                                  |
| • Numerical Modeling             |
| <ul> <li>Model/theory</li> </ul> |
|                                  |



#### Outline

- Introduction
  - Wide-pedestal QH mode (WPQH)
  - Broadband turbulence in WPQH
  - Regulating of the pedestal profile
- Identification of the broadband turbulence in WPQH
- SOL: Divertor heat flux width and pedestal turbulence
- Summary





### Experimental Characteristics of Wide Pedestal Quiescent H-Mode (WPQHM)

- Wide pedestal QH mode
  - Was first observed in DIII-D, 2015<sup>[1,2]</sup>
  - Achieved by reducing torque ~0Nm from QH mode<sup>[1,2]</sup>
  - Features:
    - Low edge rotation
    - Improved confinement, H<sub>98y2</sub>~1.2-1.6
    - Naturally ELM-free
    - Future Reactors?
- Broadband<sup>[1-4]</sup> replace edge harmonic oscillations (EHO)
- Statistic about pedestal width<sup>[5]</sup>
  - Standard QH agrees well with EPED-KBM prediction<sup>[6]</sup>
  - WP QH pedestal width is larger by >25%
- New transport and stability limits are applied for wide pedestal QH
  - Below KBM limit

NATIONAL FUSION FACILITY



[1] K. H. Burrell, et al. Phys. Plasmas 23 (2016) 056103
[2] Xi Chen, et al. Nucl. Fusion 57 (2017) 022007
[3] Xi Chen, et al. Nucl. Fusion 57 (2017) 086008
[4] K. Barada, et al. PRL 120, (2018)135002
[5] Zeyu Li, et al., Nucl. Fusion 62 (2022) 076033
[6] P. B. Snyder et al. Nucl. Fusion 51 (2011)103016

#### Scale-separated Broadband Turbulence is Observed in WPQHM



NATIONAL FUSION FACILIT

- WPQH mode is achieved with net zero inject NBI torque
- Pedestal width is greater than EPED-KBM scaling
- Broadband turbulence is observed in WPQH
  - Broadband turbulence observed in BES/DBS
- Large-scale mode
  - Low-frequency 10-60 kHz
  - low k,  $k_{\theta} < 0.3 cm^{-1}$
  - ion diamagnetic direction (IDD)
- Small-scale mode
  - High frequency 60-2500 kHz
  - high k,  $k_{\theta} < 4cm^{-1}$
  - electron diamagnetic direction (EDD)

#### Characteristics of the Dual Bands of Broadband Turbulence: Frequency Ranges and Radial Mode Structure



- Dual bands in lab frame
  - IDD: ion diamagnetic direction
  - EDD: electron diamagnetic
- IDD mode:
  - Low frequency, large scale
  - Exist all over the pedestal
- EDD mode:
  - High frequency, small scale
  - Dominates in the upper pedestal
  - Rarely extended to the SOL



#### Outline

- Introduction
- Identification of the broadband turbulence in WPQH
  - BOUT++ linear simulation reveals two scale-separated modes
    - PBM:  $\psi_N = 0.97$ , peak gradient, low-intermediate n, most unstable at LFS, ion diamagnetic direction
    - DAW:  $\psi_N = 0.93$ , flat spot, high n, electron diamagnetic direction
  - Flat spot is successfully reproduced in electron temperature BOUT++ nonlinear simulation
  - Turbulence  $\omega k$  spectrum is consistent with BES diagnostic
- SOL: Divertor heat flux width and pedestal turbulence
- Summary





$$\begin{split} \frac{\partial n_{i}}{\partial t} &= -\left(\frac{1}{B_{0}}\boldsymbol{b}\times\boldsymbol{\nabla}_{\perp}\boldsymbol{\phi}+\boldsymbol{V}_{\parallel i}\boldsymbol{b}\right)\cdot\boldsymbol{\nabla}\boldsymbol{n}_{i}-\frac{2n_{i}}{B_{0}}\boldsymbol{b}\times\boldsymbol{\kappa}\cdot\left(\boldsymbol{\nabla}_{\perp}\boldsymbol{\phi}+\frac{1}{Z_{i}en_{i}}\boldsymbol{\nabla}\boldsymbol{P}_{i}\right)-n_{i}B_{0}\boldsymbol{\nabla}_{\parallel}\left(\frac{\boldsymbol{V}_{\parallel}}{B_{0}}\right)\\ \frac{\partial n_{imp}}{\partial t} &= -\left(\frac{1}{B_{0}}\boldsymbol{b}\times\boldsymbol{\nabla}_{\perp}\boldsymbol{\phi}+\boldsymbol{V}_{\parallel i}\boldsymbol{b}\right)\cdot\boldsymbol{\nabla}\boldsymbol{n}_{imp}-\frac{2n_{imp}}{B_{0}}\boldsymbol{b}\times\boldsymbol{\kappa}\cdot\left(\boldsymbol{\nabla}_{\perp}\boldsymbol{\phi}+\frac{1}{Z_{ien_{i}}}\boldsymbol{\nabla}\boldsymbol{P}_{imp}\right)\\ \frac{\partial T_{i}}{\partial t} &= -\left(\frac{1}{B_{0}}\boldsymbol{b}\times\boldsymbol{\nabla}_{\perp}\boldsymbol{\phi}+\boldsymbol{V}_{\parallel i}\boldsymbol{b}\right)\cdot\boldsymbol{\nabla}\boldsymbol{T}_{i}-\frac{2}{3}T_{i}\left[\frac{2n_{i}}{B_{0}}\boldsymbol{b}\times\boldsymbol{\kappa}\cdot\left(\boldsymbol{\nabla}_{\perp}\boldsymbol{\phi}+\frac{1}{Z_{ien_{i}}}\boldsymbol{\nabla}\boldsymbol{P}_{i}+\frac{5k_{B}}{2Z_{ie}}\boldsymbol{\nabla}\boldsymbol{T}_{i}\right)+B_{0}\boldsymbol{\nabla}_{\parallel}\left(\frac{\boldsymbol{V}_{\parallel i}}{B_{0}}\right)\right]+\\ \frac{2}{3n_{i}k_{B}}\boldsymbol{\nabla}_{\parallel}(\boldsymbol{k}_{\parallel i}\boldsymbol{\nabla}_{\parallel}\boldsymbol{T}_{i})+\left(\frac{2m_{e}}{M_{i}}\right)^{T_{e}-T_{i}}}\\ \frac{\partial T_{e}}{\tau_{e}} &= -\left(\frac{1}{B_{0}}\boldsymbol{b}\times\boldsymbol{\nabla}_{\perp}\boldsymbol{\phi}+\boldsymbol{V}_{\parallel e}\boldsymbol{b}\right)\cdot\boldsymbol{\nabla}\boldsymbol{T}_{e}-\frac{2}{3}T_{e}\left[\frac{2n_{e}}{B_{0}}\boldsymbol{b}\times\boldsymbol{\kappa}\cdot\left(\boldsymbol{\nabla}_{\perp}\boldsymbol{\phi}-\frac{1}{en_{e}}\boldsymbol{\nabla}\boldsymbol{P}_{e}-\frac{5k_{B}}{2e}\boldsymbol{\nabla}\boldsymbol{T}_{e}\right)+B_{0}\boldsymbol{\nabla}_{\parallel}\left(\frac{\boldsymbol{V}_{le}}{B_{0}}\right)\right]+\\ 0.71\frac{2T_{e}}{3en_{e}}B_{0}\boldsymbol{\nabla}_{\parallel}\left(\frac{J_{\parallel}}{B_{0}}\right)+\frac{2}{3n_{e}k_{B}}\eta_{\parallel}J_{\parallel}^{2}+\frac{2}{3n_{e}k_{B}}\boldsymbol{\nabla}_{\parallel}(\boldsymbol{k}_{\parallel e}\boldsymbol{\nabla}_{\parallel}\boldsymbol{T}_{e})-\left(\frac{2m_{e}}{M_{i}}\right)^{T_{e}-T_{i}}\\ \frac{\partial V_{li}}{\partial t} = -\left(\frac{1}{B_{0}}\boldsymbol{b}\times\boldsymbol{\nabla}_{\perp}\boldsymbol{\phi}+\boldsymbol{V}_{\parallel e}\boldsymbol{b}\right)\cdot\boldsymbol{\nabla}\boldsymbol{\nabla}_{\parallel}-\frac{\nabla_{\parallel}(P_{i}+P_{e})}{n_{i}k_{l}}\\ \frac{\partial \sigma_{i}}{\partial t} = -\frac{1}{B_{0}}\boldsymbol{b}\times\boldsymbol{\nabla}_{\perp}\boldsymbol{\phi}+\boldsymbol{\nabla}_{\parallel}\boldsymbol{b}\boldsymbol{b}\cdot\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}_{\parallel}(\boldsymbol{\nabla}_{\perp}\boldsymbol{P}_{e})-\boldsymbol{\nabla}_{\perp}\left(\frac{J_{1}}{B_{0}}\boldsymbol{b}\times\boldsymbol{\nabla}\boldsymbol{\phi}\cdot\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{P}_{\perp}\right)\\ \frac{\partial \sigma_{i}}{\partial t} = -\frac{1}{B_{0}}\boldsymbol{b}\times\boldsymbol{\nabla}_{\perp}\boldsymbol{\phi}+\nabla_{\parallel}\boldsymbol{b}\boldsymbol{b}\cdot\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{P}_{\perp}\boldsymbol{P}_{\perp}\right)\\ \frac{\partial \sigma_{i}}{\partial t} = -\frac{1}{B_{0}}\boldsymbol{b}\times\boldsymbol{\nabla}_{\perp}\boldsymbol{\phi}+\nabla\boldsymbol{D}_{i}\boldsymbol{b}\boldsymbol{D}\cdot\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{P}_{\perp}\boldsymbol{P}_{\perp}\boldsymbol{D}\right)\\ -\boldsymbol{\nabla}\boldsymbol{\nabla}_{\parallel}\left(\frac{J_{1}}{B_{0}}\boldsymbol{b}\times\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{P}_{\perp}\boldsymbol{D}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{D}_{\perp}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{D}_{\perp}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{D}_{\perp}\boldsymbol{D}_{\perp}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{D}_{\perp}\boldsymbol{D}_{\perp}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{D}_{\perp}\boldsymbol{D}_{\perp}\boldsymbol{D}\right)\\ -\boldsymbol{\nabla}\boldsymbol{D}_{\perp}\left(\frac{J_{1}}{B_{0}}\boldsymbol{D}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{D}_{\perp}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{D}_{\perp}\boldsymbol{D}_{\perp}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{D}_{\perp}\boldsymbol{\nabla}\boldsymbol{\nabla}\boldsymbol{D}_{\perp}\boldsymbol{\nabla}\boldsymbol{D}_{\perp}\boldsymbol{D}_{\perp}\boldsymbol{\nabla}\boldsymbol{D}_{\perp}\boldsymbol{D}_{\perp}\boldsymbol{D}_{\perp}\boldsymbol{D}_{\perp}\boldsymbol{D}_{\perp}\boldsymbol{D}_{\perp}\boldsymbol{D}_{\perp}\boldsymbol{D}_{\perp}\boldsymbol{D}_{\perp}\boldsymbol{$$

NATIONAL FUSION FACIL

- BOUT++ 'six'-field module
- Relative High Zeff in WPQH •
  - Impurity should be taken into consideration
- Impurity module:
  - Impurity density evolution equ.
  - Vorticity equs.
- Impurity is considered to be fully collisional with main ion
  - $T_{imp} = T_i$
- Carbon impurity C<sup>6+</sup> is considered

 $\nabla_{\!\!\perp} \phi$ 



- BOUT++ reduced 2-fluid 6(7?)-field module is performed
  - $N_i, N_{imp}, T_e, T_i, V_{i\parallel}, A_{\parallel}, \omega$
- Ideal MHD (PBM)
  - only one unstable mode at lower pedestal  $(\psi_N = 0.968)$
  - Ion diamagnetic drift direction





- BOUT++ reduced 2-fluid 6(7?)-field module is performed
  - $N_i, N_{imp}, T_e, T_i, V_{i\parallel}, A_{\parallel}, \omega$
- Ideal MHD (PBM)
  - only one unstable mode at lower pedestal  $(\psi_N = 0.968)$
  - Ion diamagnetic drift direction
- Drift-Alfvén wave (DAW)
  - By considering adiabatic electron response in generalized Ohm's law  $(\nabla P_e)$
  - Another mode around at upper pedestal  $(\psi_N = 0.93)$
  - Electron diamagnetic drift direction
  - EM version of electron drift wave in fluid





EDD: electron diamagnetic drift direction



- BOUT++ reduced 2-fluid 6(7?)-field module is performed
  - $N_i, N_{imp}, T_e, T_i, V_{i\parallel}, A_{\parallel}, \omega$
- Ideal MHD (PBM)
  - only one unstable mode at lower pedestal  $(\psi_N = 0.968)$
  - Ion diamagnetic drift direction
- Drift-Alfvén wave (DAW)
  - By considering adiabatic electron response in generalized Ohm's law  $(\nabla P_e)$
  - Another mode around at upper pedestal  $(\psi_N = 0.93)$
  - Electron diamagnetic drift direction
  - EM version of electron drift wave in fluid
- Full 6 fields terms:
  - Ion-electron friction etc.
  - Destabilized the flat spot mode





- Low n modes peak at low field side (LFS)
  - $\psi_N = 0.97$ , outboard mid plane (OMP)
  - Rotate in ion diamagnetic direction
  - Mild PB mode, which won't cause ELMs
- High n modes peak at high field side (HFS)
  - $-\psi_N = 0.93$ , near lower and upper X points
  - Drift Alfvén wave, large S and  $\alpha$  makes the mode most unstable at HFS<sup>[1]</sup>

#### "Flat Spot" is Reproduced in Electron Temperature Channel with no ELM Crash for BOUT++ Nonlinear Simulation



- Perturbation is measured at  $\psi_N$ =0.95 in BOUT++ nonlinear simulation
- The low-n peeling-ballooning mode is mild no ELM crash
- Flat spot is successfully reproduced in different channels (~  $\psi_N$ =0.92)
  - Electron density and temperature



### BOUT++ Nonlinear Modeling Successfully Captured the Two Counter-Propagating Modes Observed in BES Diagnostic



- BOUT++ successfully captured the two counter-propagating modes observed in BES
  - Didn't capture the High freq. EDD mode
  - Lack of <u>trapped electron</u> effects?

NATIONAL FUSION FACILITY

Zeyu Li, et al., Nucl. Fusion 62 (2022) 076033

#### BOUT++ Nonlinear Modeling Successfully Captured the Two Counter-Propagating Modes Observed in BES Diagnostic



- BOUT++ successfully captured the two counter-propagating modes observed in BES
  - Didn't capture the High freq. EDD mode
  - Lack of trapped electron effects?

NATIONAL FUSION FACILITY

- Introduction
- Identification of the broadband turbulence in WPQH
- SOL: Divertor heat flux width and pedestal turbulence
  - Large scale IDD mode is extended to the separatrix, which could impact the heat flux width
  - Separatrix Er shear could suppress the turbulence spreading
  - Divertor heat flux width is correlated with the separatrix turbulence intensity flux
- Summary





### Observation of divertor heat flux width widening in QH mode plasmas



- IDD vs. EDD
  - IDD global, extended to SOL
  - EDD local, localized at pedestal top
- IDD mode may lead to the heat flux width spreading in WPQH

D. Ernst TTF 2022 Private communication Paper in preparation



#### Broadened heat flux width is also observed in recent new campaign



![](_page_18_Figure_1.jpeg)

- Edge turbulence intensity is measured by Beam Emission Spectroscopy (BES)
- Turbulence @ separatrix
   Mainly IDD low freq. MHD
- General trend: heat flux width increases with turbulence intensity
  - Turbulence broadened, beyond Eich Scaling

![](_page_18_Picture_6.jpeg)

## Change Pedestal Profile to Change the Relative Amplitude of PBM and DAW: $T_i \rightarrow PBM$

#### F<sub>i</sub>: ion temperature scale factor

![](_page_19_Figure_2.jpeg)

- Dominate mode transition happens at different n with different F<sub>i</sub>
  - $F_i=0.6$ : pure EDD;  $F_i=0.8$ : n=30;  $F_i=1.0$ : n=40;  $F_i=1.2$ : pure IDD
  - IDD mode changed accordingly; EDD mode nearly didn't change

![](_page_19_Picture_6.jpeg)

# Change Pedestal Profile to Change the Relative Amplitude of PBM and DAW: $T_{\rm e}$ -> DAW

 $F_{\rm e}\!\!:$  electron temperature scale factor

![](_page_20_Figure_2.jpeg)

- SOL profile is kept fixed
- DAW increase with T<sub>e</sub>
  - PBM also increase with total pressure

![](_page_20_Picture_6.jpeg)

#### Divertor Heat Flux Width is More Sensitive to Ion Temperature and PBM

![](_page_21_Figure_1.jpeg)

- BOUT++ could reproduce small  $\lambda_q$ =3.21mm when F<sub>i</sub><=0.8
  - Slightly higher than Eich's scaling  $\lambda_q$ =2.5mm
- Divertor heat flux width  $\lambda_q$  increases with the increase of ion mode (PBM)
  - Not sensitive to the electron temperature and DAW

![](_page_21_Picture_6.jpeg)

#### Divertor Heat Flux Width Increases with the Turbulence Intensity Flux

![](_page_22_Figure_1.jpeg)

P. H. Diamond TTF 2022 P. H. Diamond AAPPS 2022

• Turbulence intensity flux<sup>[1]</sup>

$$-\Gamma_{turb} = c_s^2 \left\langle \left(\frac{\delta P}{P}\right)^2 \delta v_r \right\rangle_{\theta,\zeta,t}$$

- Turbulence intensity flux is measured at separatrix
- Averaged over flux surface and time
- Different mechanisms:
  - IDD mode: strong effect, easy to change  $\lambda_q$
  - EDD mode: little effect (but its own magnitude even changes just a little)
  - Er shear: suppresses the spreading and narrows the  $\lambda_q$  slightly

![](_page_22_Picture_11.jpeg)

### Separatrix ExB Shearing Rate Obscures Turbulence Spreading and Narrowing the Heat Flux Width

![](_page_23_Figure_1.jpeg)

- Er profile inside separatrix is not changed to keep pedestal turbulence unchanged
  - SOL potential is modified to check the ExB shearing at the separatrix
- ExB shearing at the separatrix obscures the turbulence spreading
  - Reduce the skewness
  - Reduce the turbulence intensity flux
  - Edge eddies are sheared and broke into smaller size

## Upstream Turbulence Scale Length is Proportional to the Downstream Divertor Heat Flux Width

![](_page_24_Figure_1.jpeg)

Turbulence Mixing length

Upstream

Divertor Heat Flux Width

- Turbulence intensity scale length is measured at upstream OMP
  - Turbulence mixing length
- Shows good proportionality with divertor heat flux width

Zeyu Li, et al., in preparation

![](_page_24_Picture_8.jpeg)

- Introduction
- Identification of the broadband turbulence in WPQH
- The interplay of scale-separated modes in WPQH
- SOL: Divertor heat flux width and pedestal turbulence
- Summary

![](_page_25_Picture_6.jpeg)

#### Summary

- Wide-pedestal QH mode could be an attractive scenario for future reactors
  - Zero net inject torque, improved confinement, ELM-free
  - Turbulence-dominated pedestal, the potential to broaden heat flux width
- Identification of the different modes in WPQH
  - DAW:  $\psi_N = 0.93$ , flat spot, intermediate-high n, most unstable at HFS, EDD
  - PBM:  $\psi_N = 0.97$ , pedestal peak gradient, low n, most unstable at LFS, IDD
  - $\omega$ -k spectrum of modeled turbulences consistent with BES measurements
- Heat flux width
  - The large-scale PBM extended to SOL and could lead to heat flux width broadening
  - Divertor heat flux width increase with the turbulence intensity flux at separatrix
  - ExB shearing rate obscure the turbulence spreading
  - Upstream turbulence intensity scale length proportional to the downstream  $\lambda_q$
- Future Reactors?

NATIONAL FUSION FACILIT

![](_page_26_Picture_14.jpeg)

Flat Spot Mode

0.08

Ideal + diamad

![](_page_26_Figure_15.jpeg)

![](_page_26_Picture_16.jpeg)

### Thanks for your attention!

email: lizeyu@fusion.gat.com

![](_page_27_Picture_2.jpeg)