Characterization of Turbulence and Transport in a Tokamak Power Plant

Christopher Holland University of California, San Diego

Presented at 2023 BOUT++ Workshop Livermore, CA, January 9-12, 2023

UC San Diego

Basic considerations of reactor plasmas identify core transport and turbulence properties any viable D-T reactor must exhibit

- These requirements constrain what plasma parameters must be achieved for sustained performance required of a reactor
- More specifically, argue plasma core must:
 - Be both "collisionless" and well-coupled Ο
 - Have majority of core thermal and particle transport Ο driven by long-wavelength ITG/TEM turbulence
- Less clear what implications for near-edge/pedestal/SOL transport are, but set some interesting "boundary conditions" UC San Diego

scenarios with dominant electron heating

- 1. Sketch out basic picture of core transport in reactor
- 2. Using the fingerprint paradigm to constrain the processes consistent with this picture
- 3. Identifying and applying metrics to test this picture
- 4. Implications for near-edge and edge transport

<u>UC San Diego</u>

Begin with a few basic assertions about necessary reactor plasma conditions and parameters

- The plasma must be strongly burning (Q_{fusion} >> 1) to both generate significant net electric power and avoid recirculating power costs
 - Therefore dominated by alpha heating rather than external sources
- At relevant temperatures, alphas predominantly heat electrons (roughly 3/3 to e-, 1/3 to ions)
 - Relevant: hot enough to fuse, cold enough to avoid stability limits, overwhelming radiation losses
- In order to efficiently sustain fusion reactions, a large fraction of this electron alpha heating must be transferred to ions to keep them hot

The plasma must therefore have low collisionality but be well-coupled

Holland/BOUT++/2023

Begin with a few basic assertions about a reactor plasma, to be tested later

- The plasma must be strongly burning (Q_{fusion} >> 1) to both generate significant net electric power and avoid recirculating power costs
 - Therefore dominated by alpha heating rather than external sources
- At relevant temperatures, alphas predominantly heat electrons (roughly ²/₃ to e-, ¹/₃ to ions)
 - Relevant: hot enough to fuse, cold enough to avoid stability limits, overwhelming radiation losses
- In order to efficiently sustain fusion reactions, a large fraction of this electron alpha heating must be transferred to ions to keep them hot

J. Freidberg, *Plasma Physics and Fusion Energy*, Fig. 9.12

The plasma must therefore have low collisionality but be well-coupled

Begin with a few basic assertions about a reactor plasma, to be tested later

- The plasma must be strongly burning ($Q_{fusion} >> 1$) to both generate significant net electric power and avoid recirculating power costs
 - Therefore dominated by alpha heating Ο rather than external sources
- At relevant temperatures, alphas predominantly heat electrons (roughly $\frac{2}{3}$ to e-, $\frac{1}{3}$ to ions)
 - Relevant: hot enough to fuse, cold enough to avoid Ο stability limits, overwhelming radiation losses
- In order to efficiently sustain fusion reactions, \bullet a large fraction of this electron alpha heating must be transferred to ions to keep them hot

Fusion Energy, Fig. 9.12

The plasma must therefore have low collisionality but be well-coupled Ο

Suggests a general picture of what transport in a viable fusion reactor must look like

Suggests a general picture of what transport in a viable fusion reactor must look like

radius

Suggests a general picture of what transport in a viable fusion reactor must look like

radius

- Once energy is "in" the core ions, cannot be lost there by radiation- must be transported out to edge
- (Assertion) In any viable reactor, ion collisionality (v_i^*) will be small enough to make neoclassical transport negligible $\circ Q_{i,neo}/Q_{i,turb} \sim \chi_{i,neo}/\chi_{i,gB} \sim \rho_{i\theta}^2 v_{ii}/(\rho_i^2 v_{th}/R) \sim R v_{ii}/v_{th} \sim v_i^*$

 Therefore <u>turbulent</u> ion energy transport processes <u>must</u> play a key role in controlling core confinement <u>UCSanDiego</u> Holland/BOUT++/2023

- Once energy is "in" the core ions, cannot be lost there by radiation- must be transported out to edge
- (Assertion) In any viable reactor, ion collisionality (v_i^*) will be small enough to make neoclassical transport negligible

 $= \mathbf{Q}_{i,\text{neo}}/\mathbf{Q}_{i,\text{turb}} \sim \chi_{i,\text{neo}}/\chi_{i,\text{gB}} \sim \rho_{i\theta}^2 v_{ii}/(\rho_i^2 v_{th}/R) \sim R v_{ii}/v_{th} \sim v_i^*$

 Therefore <u>turbulent</u> ion energy transport processes <u>must</u> play a key role in controlling core confinement UCSanDiego Holland/BOUT++/2023

11

- Once energy is "in" the core ions, cannot be lost there by radiation- must be transported out to edge
- (Assertion) In any viable reactor, ion collisionality (v_i^*) will be small enough to make neoclassical transport negligible $\circ Q_{i,neo}/Q_{i,turb} \sim \chi_{i,neo}/\chi_{i,gB} \sim \rho_{i\theta}^2 v_{ii}/(\rho_i^2 v_{th}/R) \sim R v_{ii}/v_{th} \sim v_i^*$
- Therefore <u>turbulent</u> ion energy transport processes <u>must</u> play a key role in controlling core confinement <u>UCSanDiego</u> Holland/BOUT++/2023

12

- Once energy is "in" the core ions, cannot be lost there by radiation- must be transported out to edge
- (Assertion) In any viable reactor, ion collisionality (v^{*}_i) will be small enough to make neoclassical transport negligible
 Q_{i,neo}/Q_{i,turb} ~ χ_{i,neo}/χ_{i,gB} ~ ρ_{iθ}²v_{ii}/(ρ_i²v_{th}/R) ~ Rv_{ii}/v_{th} ~ v^{*}_i
- Therefore <u>turbulent</u> ion energy transport processes <u>must</u> play a key role in controlling core confinement <u>UC San Diego</u> Holland/BOUT++/2023

- Neoclassical: too small
 - Required by reactor v_i^*
- MTM, ETG:
 - can be present, but can't provide needed χ_i/χ_e
- KBM/MHD-like modes:

(A) [1] M. Kotschenreuther <i>et al</i> , Nucl. Fusion 59 096001 2019				
Mode type	$\chi_{ m i}/\chi_{ m e}$	$D_{ m e}/\chi_{ m e}$	D_{Z}/χ_{e}	
MHD-like	1	2/3	2/3	
MTM	~1/10	~1/10	~1/10	
ETG	~1/10	~1/20	~1/20	
(B)				
Mode type	$\chi_{e'}\chi_{i}$	$D_e/(\chi_i + \chi_e)$	$D_Z/(\chi_{\rm i}+\chi_{\rm e})$	
ITG/TEM	1/4–1	$-1/10 \pm 1/3$	~1	

reactors <u>very likely</u> require core thermal particle pinch

Leaves only ITG (+TEM) as viable process
UC San Diego
Holland/BOUT++/2023

- Neoclassical: too small
 - Required by reactor v_i^*
- MTM, ETG:
 - can be present, but can't provide needed χ_i/χ_e
- KBM/MHD-like modes: Mo only drive particle outflow,

(A) [1] M. Kotschenreuther <i>et al</i> , Nucl. Fusion 59 096001 2019				
Mode type	$\chi_{ m i}/\chi_{ m e}$	$D_{ m e}/\chi_{ m e}$	$D_{\rm Z}/\chi_{\rm e}$	
MHD-like	1	2/3	2/3	
MTM	~1/10	~1/10	~1/10	
ETG	~1/10	~1/20	~1/20	
(B)				
Mode type	$\chi_{ m e}/\chi_{ m i}$	$D_e/(\chi_i + \chi_e)$	$D_Z/(\chi_{\rm i}+\chi_{\rm e})$	
ITG/TEM	1/4-1	$-1/10 \pm 1/3$	~1	

reactors very likely require core thermal particle pinch

Also want to avoid EP-driven modes: alpha redistribution, wall damage
 Leaves only ITG (+TEM) as viable process
 UCSanDiego Holland/BOUT++/2023

(A)

Mode type

- Neoclassical: too small
 - Required by reactor v_i^*
- MTM, ETG:
 - can be present, but can't provide needed χ_i/χ_e
- KBM/MHD-like modes:

only drive particle outflow,

MHD-like 1 2/3 2/3MTM ~1/10 ~1/10 $\sim 1/10$ ETG ~1/10 $\sim 1/20$ $\sim 1/20$ (B) Mode type χ_e/χ_i $D_e/(\chi_i + \chi_e)$ $D_Z/(\chi_i + \chi_e)$ **ITG/TEM** 1/4 - 1 $-1/10 \pm 1/3$ ~1

 χ_i/χ_e

[1] M. Kotschenreuther et al, Nucl. Fusion 59 096001 2019

 $D_{\rm e}/\chi_{\rm e}$

reactors very likely require core thermal particle pinch

• Also want to avoid EP-driven modes: alpha redistribution, wall damage

Leaves only ITG (+TEM) as viable process

 D_Z/χ_e

(A)

- Neoclassical: too small
 - Required by reactor v_i^*
- MTM, ETG:
 - can be present, but can't provide needed χ_i/χ_e
- KBM/MHD-like modes:

only drive particle outflow,

Mode type χ_i/χ_e $D_{\rm e}/\chi_{\rm e}$ D_Z/χ_e MHD-like 1 2/3 2/3~1/10 ~1/10 $\sim 1/10$ MTM ETG ~1/10 $\sim 1/20$ $\sim 1/20$ (B) Mode type χ_e/χ_i $D_e/(\chi_i + \chi_e)$ $D_Z/(\chi_i + \chi_e)$ **ITG/TEM** 1/4 - 1 $-1/10 \pm 1/3$ ~1

[1] M. Kotschenreuther et al, Nucl. Fusion 59 096001 2019

reactors very likely require core thermal particle pinch

- Also want to avoid EP-driven modes: alpha redistribution, wall damage
- Leaves only ITG (+TEM) as viable process UC San Diego Holland/BOUT++/2023

Quantitative metrics can be formulated to further test and utilize heuristic picture presented

- Degree of core coupling can be determined by examining ratio of energy confinement and exchange times $\tau_{\rm E}/\tau_{\rm exch}$ \circ $\tau_{\rm E} >> \tau_{\rm exch}$: energy confined long enough to equilibrate
 - \circ $\tau_{\rm E} << \tau_{\rm exch}$: energy leaves system before equilibration
- Core-averaged $<\chi_i^{turb}/\chi_e^{turb}>$ can be used to fingerprint the dominant core transport mechanisms
 - Need to remove any neoclassical contributions to catch the right suspect(s)

iego

All four burning plasmas are well-coupled, and have $\chi_i^{turb}/\chi_e^{turb} \gtrsim 1$ consistent with ITG/TEM dominance

These metrics allow comparison of current-day plasmas to future conditions

Some quick thoughts on pros and cons of these conclusions for core modeling

• Pros:

 ITG is our most well-studied mode, should have the highest confidence in projecting it to future regimes

Holland/BOUT++/2023

- Expect ITG/TEM-driven main-ion peaking to increase with lower collisionality [1,2,3]
- Expect weaker core high-Z impurity accumulation [4]

Cons

UC San Diego

- EM effects can weaken pinch [3]
- Too much peaking can push into β limits

[1] C. Angioni *et al.*, PPCF **51** 124017 (2009)

- [2] B. A. Grierson *et al.*, PoP **25** 022509 (2018)
- [3] E. Fable et al., Nucl. Fusion **59** 076042 (2019)

[4] C. Angioni PPCF 63 073001 (2021)

Some quick thoughts on pros and cons of these conclusions for core modeling

• Pros:

 ITG is our most well-studied mode, should have the highest confidence in projecting it to future regimes

Holland/BOUT++/2023

- Expect ITG/TEM-driven main-ion peaking to increase with lower collisionality [1,2,3]
- Expect weaker core high-Z impurity accumulation [4]

• Cons:

UC San I

- EM effects can weaken pinch [3]
- Too much peaking can push into β limits

[1] C. Angioni *et al.*, PPCF **51** 124017 (2009)

- [2] B. A. Grierson *et al.*, PoP **25** 022509 (2018)
- [3] E. Fable et al., Nucl. Fusion **59** 076042 (2019)

[4] C. Angioni PPCF 63 073001 (2021)

So what does this picture mean for near-edge and edge transport? (Trying to be more general than only pedestals)

- First, would assert this picture specifies an effective inner boundary condition for this region- need to get plasma as hot and dense as sustainably possible inside separatrix
 - Core transport stiffness + minimal reactor core actuators requires this
- Second, what will be the impact of low ion collisionality and large ion energy flux at core/near-edge boundary?
 - Along with small ρ^* , will push to stronger ITG/TEM at "top" of region, weaker neoclassical transport
 - How far through the region will these modes remain important (if at all)?
 Will depend on parameters like separatrix collisionality (and thus SOL transport, attached/detached conditions, radiative impurities, etc.)...
 - How will they interact with KBM/PBM/MHD- large busty ELMS, quiescent steady state,...?

The tight coupling of particle transport and ion transport mechanisms will be essential

- Typically in current-day devices, inter-ELM density profile set by balance of fueling (core & edge) and resistive/fluid transport mechanisms (neoclassical, RBM, KBM etc.)
- In a burning plasma, will need sufficiently hot & dense plasma at "top" of near-edge region that both of those mechanisms will be quite weak there
- How will a change in balance of transport drivers and fueling impact density near-edge profile? Will we still have classic pedestal structure, or something broader?
 - Changes may not necessarily be bad, but shouldn't assume future devices will look like what study/assume now
 - As Pat said this morning, essential to do some cost-benefit analysis

UC San Diego

Backups

UCR (<u>Unoptimized</u> Compact Reactor) size, shape, and field drawn from values used in similar studies

 $B_0 = 8$ T, R = 4 m, a = 1.4 m, κ = 2, δ=0.5

B_{coil} ~22 T depending on inboard build

Holland/BOUT++/2023

STEP workflow yields inductive and steady-state scenarios that can meet specified 200+ MWe goal

To more quantitatively test this picture, examine how well it describes four different burning plasmas

In all four scenarios (including UCR steady-state) α -heating dominates and is predominantly to electrons

Examine this picture using:

- ITER baseline (15 MA) scenario [1]
 - Added tungsten fraction with $n_W/n_e = 1.5e-5 (Z_{avg} = 50)$ for consistency with other cases
- SPARC primary reference discharge (PRD) [2]
- Use case reactor (UCR) [3]

UC San I

- $R_0 = 4 \text{ m}, B_0 = 8 \text{ T}$ tokamak producing ~1 GW fusion power
- UCR-P: 16 MA pulsed
- UCR-SS: 12 MA steady-state
- See my poster this PM for more details

All three inductive burning plasmas have > 50% core transport through ions (UCR-SS ~ 40%)

Examine this picture using:

- ITER baseline (15 MA) scenario [1]
 - Added tungsten fraction with $n_W/n_e = 1.5e-5 (Z_{avg} = 50)$ for consistency with other cases
- SPARC primary reference discharge (PRD) [2]
- Use case reactor (UCR) [3]

UC San D

- $R_0 = 4 \text{ m}, B_0 = 8 \text{ T} \text{ tokamak}$ producing ~1 GW fusion power
- UCR-P: 16 MA pulsed
- UCR-SS: 12 MA steady-state
- See my poster this PM for more details

Neoclassical energy transport negligible in all four burning plasmas

Examine this picture using:

- ITER baseline (15 MA) scenario [1]
 - Added tungsten fraction with $n_W/n_e = 1.5e-5 (Z_{avg} = 50)$ for consistency with other cases
- SPARC primary reference discharge (PRD) [2]
- Use case reactor (UCR) [3]

UC San L

- $R_0 = 4 \text{ m}, B_0 = 8 \text{ T}$ tokamak producing ~1 GW fusion power
- UCR-P: 16 MA pulsed
- UCR-SS: 12 MA steady-state
- See my poster this PM for more details

