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§ In most cutting edge science applications we face a choice between 
— Coarse scale simulations:
• Device scale simulations 
• Enable design optimization and UQ 
• Cannot represent all salient features
• Do not resolve all necessary physics 

— Fine scale simulations:
• Can represent any important feature
• Resolve all necessary (known) physics
• Are severely limited in size 
• Are exceedingly expensive

Predictive Simulations have Become the Third Branch of Science 
and are Key for Hypothesis Generation, Exploration, and Validation

Coarse Scale

Fine Scale

Multiscale simulations combine the best of both world
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§ Multi-grid techniques explicitly express simulations 
hierarchically to cover longer length- and timescales
— Solve the same equations faster by focusing on key degrees of freedom

§ Accelerated molecular dynamics explore multiple timescales 
by modifying the energy landscape or approximate force fields
— Specific solution for the sampling problem of MD simulations

§ Similar solutions depend on unified representations that 
fundamentally do not bridge scales
— Coarse scale equations are based on coarse scale physics
— Fine scale representations grow beyond reasonable bounds

Multiscale is a Widely Used Term With Different Meanings in 
Different Communities and With a Long History of Ideas

https://cen.acs.org/articles/90/i29/Simulations-Peg-Protein-Folding.html

Many of the most interesting problems require coupling different representations



4
LLNL-PRES-xxxxxx

§ Melt pools in manufacturing:
— Continuum                 Phase field

§ HE materials
— Homogeneous material               grain scale responses

§ NIF holhraums
— Hydrodynamics               Atomic energy model

§ Cancer signaling chain
— Continuum membrane              Bead level MD              Atomistic 

§ Climate simulations
— Ocean modeling               ice sheets 

Different Representations can Cover Different Physics, Different 
Length Scales, Different Time Scales, etc., and can be Nested
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§ Hydrodynamics vs. radiation transport

§ Transport vs. reaction

§ One particularly common pattern are “subgrid” 
models:
— At each coarse time-step
— At each mesh point
— Call fine-scale physics (EOS, kinetics, rad. transport , …)

§ Depending on the fidelity subgrid models quickly 
dominate the run time

Many Physics Simulations Directly Couple Either Multiple Scales 
or Multiple Types of Physics to Improve Accuracy

Hydro-Code

Hydro – Step N

Subscale Physics

Hydro – Step N
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§ Advantages:
— Massive expected improvements in performance

§ Challenges:
— Collect training data 
— Guarantee sufficient accuracy 
— Report potential failures

§ Existing Solution
— Execute a simulation of interest with the original 

physics to collect data
— Train reliable surrogate model
— Execute new simulation with surrogate model 
— Check for coverage and accuracy of the model
• If problems are found – REPEAT until convergence  

Deep Learning is Enabling us to Build Surrogate Models with 
Arbitrary Inputs and Outputs to Replace the Fine Scale Solution 

Hydro-Code

Hydro – Step N

Subscale Physics

Hydro – Step N

DL Surrogate 



7
LLNL-PRES-xxxxxx

§ Surrogate models without the need for exhaustive training data

§ Reliable models with well vetted defaults

§ Persistent and continuously improving models

§ Ability to exploit ensemble calculations 

§ Potential for nested multiscale without exploding system complexity 

Autonomous Multiscale Simulations (AMS) Describe a Next 
Generation Multiscale Framework to Address these Problems

Warning – Work in Progress
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Autonomous Multiscale Simulations 

HPC SystemHydro-Code

Hydro – Step N

Subscale Physics

Hydro – Step N
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Autonomous Multiscale Simulations – Integration 

HPC SystemHydro-Code

Hydro – Step N

AMS

Hydro – Step N

• Assume standard MPI code 
• Aiming for a single line 

replacement  
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Autonomous Multiscale Simulations – Turn Bulk-Parallel 
Subscale Physics into Dynamic Workflow 

HPC SystemHydro-Code

Hydro – Step N

UQ

Hydro – Step N

• Confidence in the current model 
with current input
• Input based – How far away from the 

training data is the current inputs
• DeltaUQ – Uncertainty estimates for 

arbitrary neural networks 
https://paperswithcode.com/paper/
single-model-uncertainty-estimation-via

Gather

• PyTorch model inference 

https://paperswithcode.com/paper/
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Autonomous Multiscale Simulations – Mitigate Inevitable 
Bottlenecks in Subscale Physics via Automatic Load Balancing  

HPC SystemHydro-Code

Hydro – Step N

UQ

Hydro – Step N

Gather

• Load balancing
• Cross-node 
• Cross-machine

Distribute Inputs

SPSPSPSPSPSP
SPSPSPSPSPSP

Gather Outputs

• Proxy-App emulating hydro
• AMS interface integrated 

with MARBL
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Autonomous Multiscale Simulations – Preparing for Dynamic, 
“Autonomous” Models via Training Data Collection

HPC SystemHydro-Code

Hydro – Step N

UQ

Hydro – Step N

Gather

Distribute Inputs

SPSPSPSPSPSP
SPSPSPSPSPSP

Gather Outputs

RabbitMQ Queue

Pre-Filter

• Asynchronous queue of 
potential new training data

• Similarity based filter (FAISS)

• File based KOSH database of 
potential candidates KOSH – Candidates 
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Autonomous Multiscale Simulations – Asynchronous and 
Independent Training Data Selection and Model Update

HPC SystemHydro-Code

Hydro – Step N

UQ

Hydro – Step N

Gather

Distribute Inputs

SPSPSPSPSPSP
SPSPSPSPSPSP

Gather Outputs

RabbitMQ Queue

Pre-Filter

HPC 
System

KOSH – Candidates 

• Out-of-training data detection 

HPC 
System

Candidates Database Model

Training Data Selection

Database

Model (Re-)Training

Model

• Automatic re-training 
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Autonomous Multiscale Simulations – Workflow Coordination 
using Existing Cloud Infrastructure

HPC SystemHydro-Code

Hydro – Step N

UQ

Hydro – Step N

Gather

Distribute Inputs

SPSPSPSPSPSP
SPSPSPSPSPSP

Gather Outputs

RabbitMQ Queue

Pre-Filter

HPC 
System

KOSH – Candidates 

Candidates Database Model

Training Data Selection

Database

Model (Re-)Training

Model

PDSAMS Daemon

observe
schedule

Autonomous Multiscale Simulations provide reliable, self-healing, and persistent 
models with minimal human interventions
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§ Interface for persistent models that will become major assets 

§ Implicit sharing of information and computing resources between related projects

§ Super-linear speed-up of simulation ensembles

Autonomous Multiscale Simulations are Structurally Different from 
the State-of-the-Art and Enable Fundamentally New Capabilities  

HPC System

Hydro-Code

Hydro – Step N

UQ

Hydro – Step N

Gather
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§ Interface for persistent models that will become major assets 

§ Implicit sharing of information and computing resources between related projects

§ Super-linear speed-up of simulation ensembles

§ Interface to gradually increase accuracy of subscale physics as models are converging
— Including the potential to integrate experimental data

§ Simultaneously build multiple disjoint models 

§ Ability for nested multiscale modeling 

Autonomous Multiscale Simulations are Structurally Different from 
the State-of-the-Art and Enable Fundamentally New Capabilities  

First light computation of the single app version this Spring 2023



Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United 
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or 
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, 
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government 
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.


