
StyleGAN as an AI Deconvolution
Operator for Large Eddy Simulations of
Turbulent Plasma Equations in BOUT++

Project: FARSCAPE II

Jony Castagna – UKRI-STFC Hartree Centre

Francesca Schiavello – UKRI-STFC Hartree Centre

BOUT++ meeting 2023: 09-13/01/2023

Outlines

• Large Eddy Simulation (LES)

• GAN and StyleGAN

• The StylES procedure

• Results on the Hasegawa Wakatani (HW) test case

• Integration with BOUT++

• Resume

Universal equilibrium range
Kolmogorov theory:

1) At large Re number the small scales of turbulence
are isotropic and have a universal structure (i.e.
independent of the flow)

2) At large Re the local average properties of the
small- scale components of any turbulent motion are
determined entirely by kinematic viscosity and
average rate of dissipation per unit mass.

3) There is an upper subrange (the inertial subrange)
in which the local average properties are determined
only by the rate of dissipation per unit mass.

Large Eddy Simulation (I)

Large Eddy Simulation (II)

In DNS we want to solve the full range of scales In LES we want to solve only up to a certain range

LES is much faster than DNS but needs modelling the sub-grid scale tensor!

Large Eddy Simulation (III)

Filter operator

2D Homogeneous Isotropic Turbulent (2D-HIT)

Vorticity field

Inverse cascade of energy

Nastrom , Gage, Jasperson , Nature 310 (1984)Experimental evidences from
atmospheric turbulence measurements!

Kraichnan 1967 theory

Hasagawa Wakatani (HW)

Results obtained with BOUT++

Similar fluid
dynamic

behaviours!

HW equations

2D Navier-Stokes equations

Modified Hasagawa Wakatani (mHW)

Results obtained with BOUT++

In a tokamak edge any potential
fluctuations on a flux surface is neutralized
by the parallel electron motion

Numata, R., Ball, R., & Dewar, R. L, “Bifurcation in electrostatic
resistive drift wave turbulence”. Physics of Plasmas, 14 (10),
102312, 2007

HW vs mHW

Zonal flow due to a gradient in
the vertical direction

These are very difficult to
model in LES!

Generative Adversarial Networks (GANs)

Idea: Can I train a GAN to reconstruct the DNS fields
from the internal fields seen as LES fields?

LES field

DNS field

Potentially two instantaneous of the
same Navier-Stoke problem can be obtained, U(t) and

U(t+Dt) but there is no guarantee that the internal
layers are representation of the same filtered Navier-

Stoke problem, U(t) and U(t+Dt) !~ ~

Each layer (style) can be adjusted without
interfering with the other levels!

Idea: I need a more “flexible GAN”: StyleGAN!

Latent space interpolation

Coarse
Styles (42 – 82)

Medium
Styles (162 – 322)

Fine
Styles (642 – 5122)

Wa Wb

Wa Wb

Wa Wb

How StyleGAN is linked to LES?

4x4 8x8 16x16 32x32 64x64 128x128 256x256 512x512

Different layers of the StylES generator

Different layer can be "thought" as
different filtered LES fields!

We can use StyleGAN for
deconvolution of a LES field and
find corresponding DNS field

We do not need a RNN!

Spectra at different layers of StyleGAN (10242)

We can choose any layer down to 16x16!

We want StyleGAN learn
in the universal

equilibrium range!

Pros and cons

resolution

fields

resolution

fields

Z

512x512

1024x1024

Z

16x16

1024x1024

fast research in latent space (find Z) -> slow LES slow research in latent space -> fast LES

Style Eddy Simulation (StylES)
Procedure:

1) generate DNS data

2) train StyleGAN on the data together with a filter G from DNS to LES fields

3) pick a style (LES field) within the universal equilibrium range

4) start from a given DNS field => find latent space W+ modifying each style up to the LES

internal layer

5) find non filtered linear term UU from the reconstructed DNS field and filter G

6) move in time using LES equations from t to t+Δt

7) repeat from step 3, matching the new LES field at time t+Δt

Results on 2D-HIT

Reconstruction from 32x32 -> 256x256, eREC = 10-4

StylES 32x32 StylES 256x256

Results on HW (I)

Reconstruction across the full training range (200 to 300 wi)

Results on HW (II)

Convergence to DNS results as we tight the reconstruction tolerance eREC

DNS (256x256)

16x16 32x32 64x64 128x128

HW field reconstruction

HW 128x128 (toll 2x10-4)

HW 64x64 (toll 2x10-4)

HW 32x32 (toll 5x10-5)

HW 16x16 (toll 10-6)

Results on mHW (II)

Reconstruction with tolerance 10-5

512x512 64x64 512x512 512x512

Integration with BOUT++

Filtered form of HW equations

are the LES fields to be
passed to StylEGAN
running on GPU via
TensorFlow

LES size fields to be
passed back to BOUT++

Integration with BOUT++

rLES = findLESTerms(n, phi, vort, pModule, pFindLESTerms);
int N_LES = n.getNz();
int cont=0;
for(int i=2; i<n.getNx()-2; i++) // we assume 2 guards cells in x-direction

for(int j=0; j<1; j++)
for(int k=0; k<n.getNz(); k++){
Dpyvx(i,j,k) = rLES[cont + 0*N_LES*N_LES];
Dpxvy(i,j,k) = rLES[cont + 1*N_LES*N_LES];
Dpynx(i,j,k) = rLES[cont + 2*N_LES*N_LES];
Dpxny(i,j,k) = rLES[cont + 3*N_LES*N_LES];
cont = cont+1;

}

ddt(n) = -Dn*Delp4(n) + Dpyvx + Dpxvy;
ddt(vort) = -Dvort*Delp4(vort) + Dpynx + Dpxny;

call a function with an
Embedded Python call

pass back 1D numpy
array to BOUT++

add sub-grid scale terms

hw.cxx file in Hasegawa-wakatani example

https://github.com/farscape-project/BOUT-dev.git

branch: bout_with_StylES

https://github.com/farscape-project/BOUT-dev.git

What happens on the GPU?

unpack 1D numpy array
from BOUT++
(CPU, 64bit)

TensorFlow arrays
(GPU, 32bit)

reconstruct DNS fields
via search in the latent

space (GPU)

find derivatives
2nd order central scheme

(GPU)

product as derivatives
(GPU)

filter all quantities
(GPU)

find sub-grid scale terms
(GPU)

pack to a 1D numpy array
for BOUT++

(CPU, cast to 64bit)

Current Issues (I)

A well trained GAN should
produce fields where this

correlation is perfectly
satisfied!

But this is not always the
case…

Current Issues (II)

oscillations may occur
in the second

derivatives field

(Maybe due to the image noise
injected in the last style?)

Gaussian filter

Possible solution,
but it has an extra

computational
cost scaling with

N2!

Current Issues (III)

Net flow when starting
BOUT++ from a
StyleGAN DNS

Enforce symmetry!

Performance (I)

resolution

field
s

Z

512x512

1024x1024

A smaller LES has:
- faster LES time integration - longer search for W+

- faster transfer CPU-GPU - longer filtering
- faster derivatives

16x16

overall time
(BOUT + StylES)

implicit LES, i.e.:
no sub-grid scale
models added!

NLES

Expected trend!

Note: the inference time is irrespective from the LES resolution chosen!!

Performance (II)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 512 1024 1536 2048 2560 3072 3584 4096

ti
m

e
p

e
r

st
ep

mesh size N

transfer CPU to GPU

search for W+ for 1 iter

derivatives

Gaussian filter

transfer GPU to CPU

0

2

4

6

8

10

12

0 512 1024 1536 2048 2560 3072 3584 4096

ti
m

e
p

er
 r

h
s

st
ep

DNS resolution

StylES is ~ 10% of the DNS!

BOUT++

StylES

Parallelization via DTensor (TensorFlow)
of convolutional layers

28x28x1 = 786

14x14x4

Conv2D (4, kernel 5x5, stride 2,2, padding=SAME)
for a total of 5x5x4 = 100 parameters

7x7x16

Conv2D (4, kernel 5x5, stride 2,2, padding=SAME)
for a total of 5x5x16 = 400 parameters

Split along x and y
as a domain decomposition

Currently
supported
only TPUs!

Hopefully on
NVidia GPU by
end Q1 2023!

Parallelization with BOUT++ and DTensor

…but, “Pencil decomposition” is also
supported in DTensor!

GPU 0

GPU 1

However, the split on Dtensor
currently happens from 1 GPU…

BOUT++ topology and parallelization
is quite complex…

Resume (I)
• We introduced a novel surrogate model based on latest Generative

Adversarial Networks (GANs) for turbulent flow simulations

• This allows to avoid the train of a RNN for a time integration

• We do not use physic constrains yet, as these are inherited via the filter
operator

• Good results obtained for HIT-2D, HW and mHW test cases

• Integration with BOUT++ is nearly completed, but some issues are currently
encountered

Future work

• Complete integration StylES in BOUT++ and compare with LES models

• We need to optimize and parallelize the integration to multiGPU

• Extension to 3D (as a series of 2D planes along z…)

