BOUT++ simulations of small ELM dynamics and associated SOL width broadening

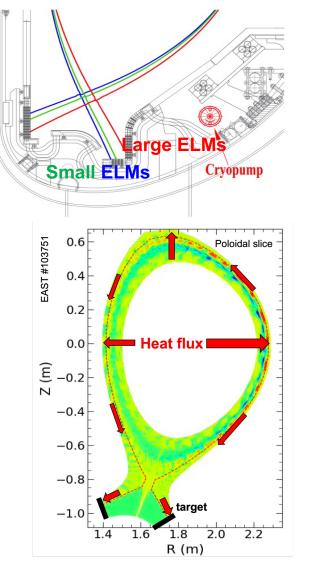
Nami Li^{1*}

X. Q. Xu¹, P.H. Diamond², Y. F. Wang³, X. Lin³, N. Yan³ Z.Y. Li³ and G. S. Xu³

¹Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

²University of California at San Diego, CA 92186, USA ³Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China

*li55@llnl.gov


BOUT++ 2023 workshop January 9-11, 2023 Lawrence Livermore National Laboratory, Livermore, CA

BOUT++ simulations are performed to investigate the underlying physics of small ELMs dynamics and the associated SOL width broadening

- Small ELMs have been achieved by controlling strike points from vertical to horizontal divertor plates in EAST expts.
- ✤ 6-field 2-fluid turbulence code (6F):
 - ✓ Ion density n_i , ion and electron temperature T_i , T_e , ion parallel velocity $V_{\parallel i}$, parallel magnetic vector potential A_{\parallel} and vorticity ϖ equations
 - Peeling-Ballooning modes, Drift-Alfvén modes, ion diamagnetic effect, resistivity, parallel thermal conductions, etc.
- Small ELMs physics: turbulence spreading and its impact on heat flux width broadening
 - $\checkmark~$ Based on EAST expts, 20 simulations for a scan
 - Pedestal collisionality v^*
 - Pedestal density width/gradient ∇n
 - Pedestal radial electric field (Er)

2

Small ELMs can be triggered by increasing separatrix density

and/or decreasing pedestal density gradient

data2 data3

data4 -#103748 f

0 95

#103745 f

-#103751 fit

1 05

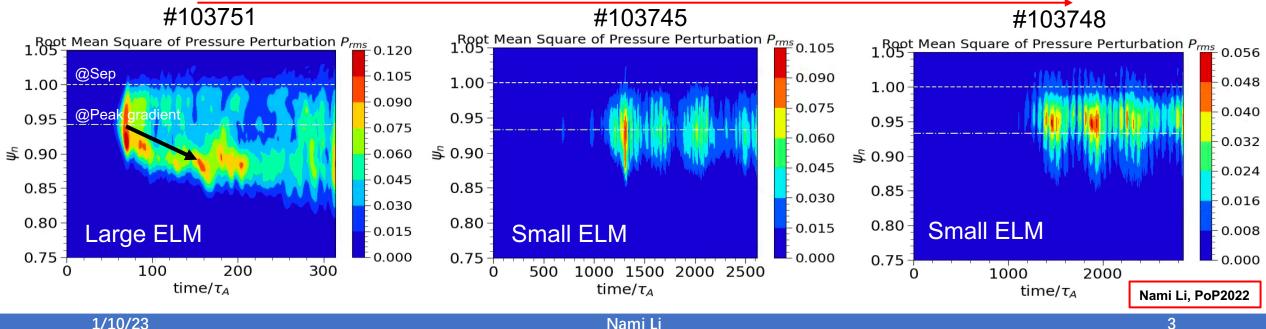
Large ELMs

Small ELN

0.85

2.5

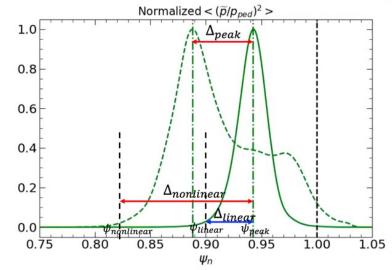
0.7


0.75

- 1. Small ELMs have been achieved with increasing SOL density by controlling strike points from vertical to horizontal divertor plates as demonstrated in EAST expts. # data1
 - Small ELMs can be triggered, either with \checkmark
 - the ideal peeling-ballooning mode near the peak gradient of the pressure (#103745)

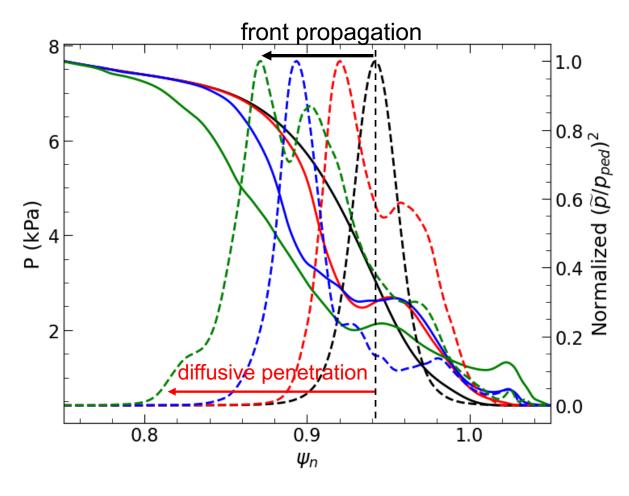
or

Local ballooning instability near separatrix (#103748)



Small ELMs can be triggered by marginally unstable modes

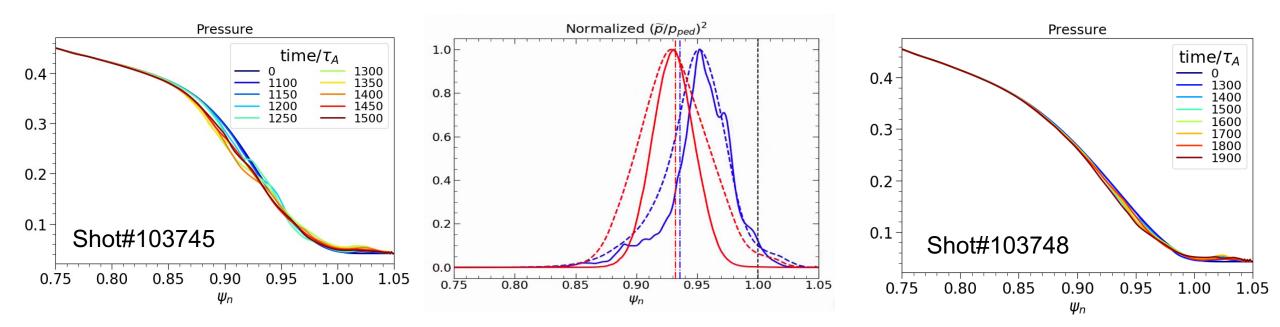
- Linear: in close proximity to instability threshold for
 - \checkmark low-n peeling mode
 - ✓ high-n ballooning mode
 - ✓ intermediate-n peeling-ballooning mode
 - ✓ Local ballooning instability near separatrix
- Nonlinear:
 - \checkmark Inward avalanche due to multiple pedestal crashes \rightarrow large ELMs
 - ✓ Inward turbulence spreading from linear unstable zone to stable zone
 → small ELMs
- Inward fluctuation intensity spreading
 - The front propagation follows the sequence of multiple profiles collapsing: Δ_{peak}
 - $\circ~$ The inward penetration as the intensity radial profile broadening: $\Delta_{nonlinear} \Delta_{linear}$



B OUT+

Small or large ELMs strongly depend on the inward fluctuation spreading from linear unstable zone to stable zone

For the large ELM (type-I ELM)

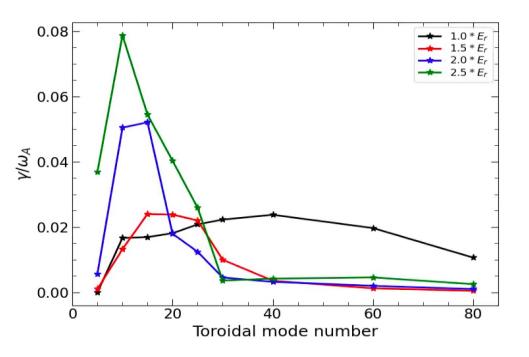

- The linear mode (peeling-ballooning) is very unstable with large linear growth rate in the pedestal
- ✓ The pressure fluctuation intensity at the onset of nonlinear phase is much stronger than that of the small ELM

✓ Inward avalanche:

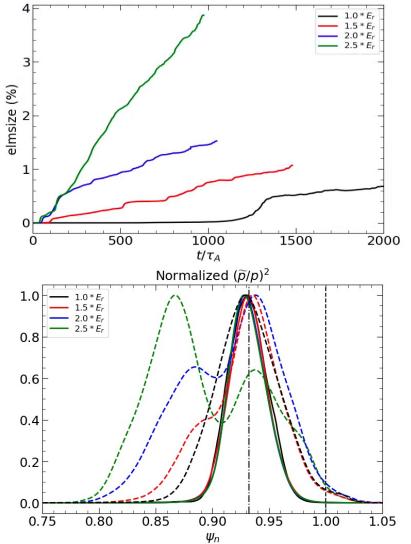
The high pressure fluctuation intensity \rightarrow pedestal collapses \rightarrow profile steepening inward \rightarrow pedestal top gets into linear unstable zone \rightarrow fast front propagation and deep diffusive penetration

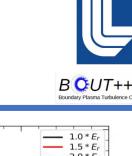
B OUT++

Small or large ELMs strongly depend on the inward fluctuation spreading from linear unstable zone to stable zone



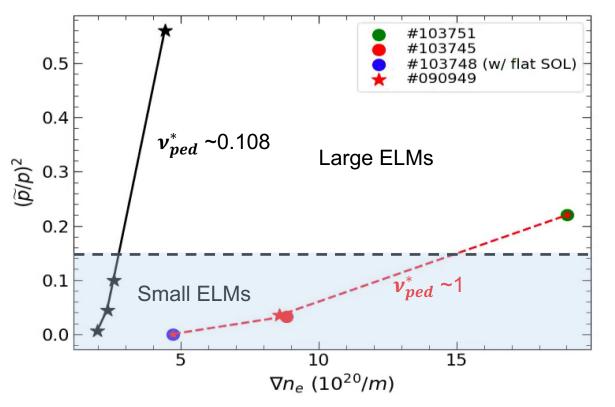
For the small ELMs


- ✓ small ELMs can be triggered by marginally unstable mode
 - low-n peeling mode, high-n ballooning mode or intermediate-n peeling-ballooning mode
 - The fluctuation intensity is low → pedestal gets into linear stable zone after the initial ELM crash→ there is no clear front propagation but with both inward and outward turbulence spreading

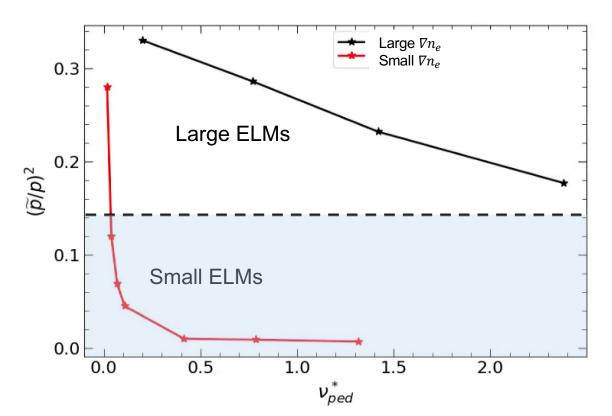

B O UT++

A transition occurs from small ELMs to large ELMs with increasing pedestal ExB shear flow

- ✤ With increasing pedestal Er
 - ✓ The dominant mode shifts from high-n to low-n with a narrow mode spectrum
 - ✓ The maximum linear growth rate increases
 - ✓ The ELM size increases
- * The ELM size depends strongly on the inward penetration depth $\Delta\psi_n$



Nami Li


Small ELMs (reducing the ELM size):

How do pedestal plasma parameters impact on the turbulence spreading from pedestal to SOL?

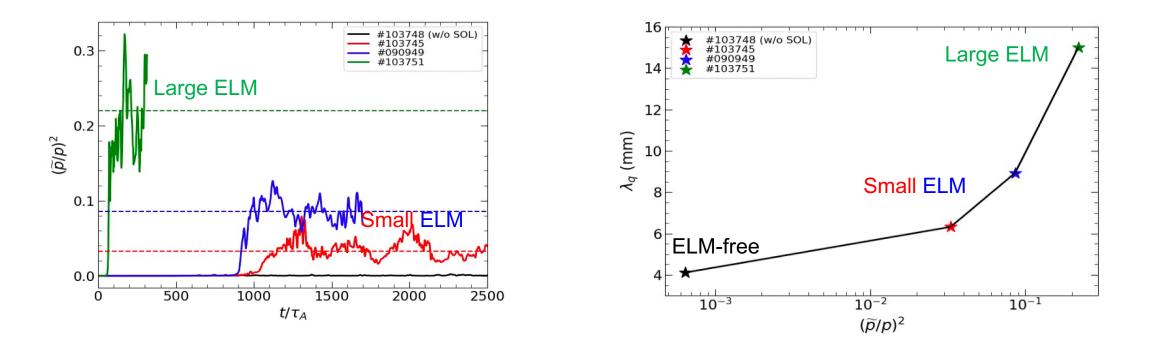
Turbulence spreading increases as pedestal density gradient increases and pedestal collisionality decreases

- ✤ Fluctuation intensity $(\tilde{p}/p)^2$ at LCFS increases as pedestal gradient ($\nabla n_e \text{ or } \nabla P_0$) increases
 - o Small ELMs
 - ✓ With high v_{ped}^* : wide range of ∇n_e or ∇P_0 window
 - ✓ With low v_{ped}^* : narrow range of ∇n_e or ∇P_0 window

- ✤ Fluctuation intensity $(\tilde{p}/p)^2$ at LCFS increases as pedestal collisionaltiy v_{ped}^* decreases
 - \circ Small ELMs
 - ✓ With large $∇n_e$ or $∇P_0$: very high v_{ped}^*
 - V With small ∇n_e or ∇P_0 : wide range of v_{ped}^* window

Nami Li

BOUT++


Small ELMs:

How does turbulence spreading affect the SOL width broadening?

We introduce fluctuation energy intensity flux Γ_{ε} at LCFS to measure turbulence spreading from pedestal into the SOL

 $\boldsymbol{\Gamma}_{\varepsilon} = \boldsymbol{c}_{s}^{2} \big\langle \widetilde{\boldsymbol{V}_{r}} (\widetilde{\boldsymbol{p}}/\boldsymbol{p})^{2} \big\rangle$

Divertor heat flux width is broadened in the small or grassy ELM regime due to the large turbulence transport

* λ_q increases with fluctuation intensity $(\tilde{p}/p)^2$ increasing at LCFS

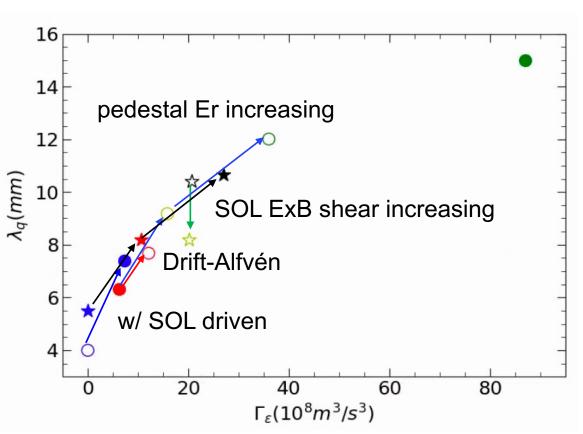
* From small ELM to large ELM, λ_q is significantly broadened

BOUT++

1/10/23

BOUT++ turbulence simulations show λq is significantly broadened from ELM-free to small ELM regime as fluctuation energy intensity flux increases

- ✤ Divertor heat flux width is broadened by a larger radial turbulence transport
 - ✓ Fluctuation energy intensity flux Γ_{ϵ} at LCFS measures the turbulence spreading from pedestal into the SOL


 $\Gamma_{\varepsilon} = c_{S}^{2} \langle \widetilde{V}_{r}(\widetilde{p}/p)^{2} \rangle$

 \checkmark Heat flux width increases with Γ_{ε} increasing

BOUT++ turbulence simulations show the SOL width λq is significantly broadened via controlling of edge fluctuation

 $\Gamma_{\varepsilon} = c_s^2 \langle \widetilde{V}_r(\widetilde{p}/p)^2 \rangle$

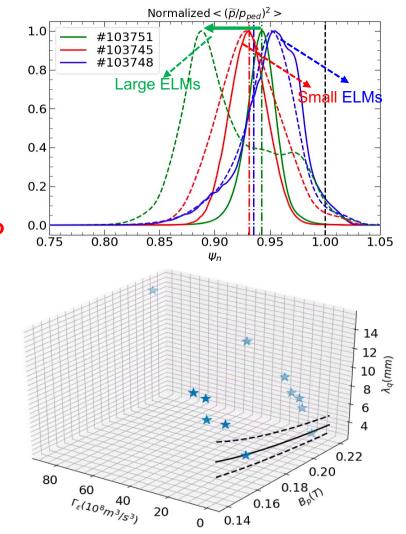
- λq is broadened by increasing fluctuation energy intensity flux Γ_{ε} at LCFS^[1]
 - Drift-Alfvén turbulence enhances the turbulence spreading from pedestal to SOL, leading to SOL width broadening
 - λq increases with increasing SOL local instabilities
- λq increases with increasing Er shear flow in the pedestal
 - ✓ The stronger Er shear flow shifts the most unstable modes to lower-n and narrows the mode spectrum ^[2,3] → fluctuation energy intensity flux Γ_{ε} → pedestal turbulence spreading enhanced

$$E_r = \frac{\nabla P_i}{Z_i e n_i} - V_{\theta i} B_{\phi} + V_{\phi i} B_{\theta}.$$

 λq decreases with sufficiently increased SOL ExB shear – shear suppression of turbulence spreading

[1] Xu Chu et al., NF 62 (2022) 066021, [2] Y. Zhang et al., PoP 26, 052508 (2019); [3] J.G. Chen et al., PoP 24, 050704 (2017)

1/10/23


Nami Li

L

Summary

- Operating in H-mode with small ELMs offers promise to solve two critical problems: reducing the ELM size and broadening the SOL width
- Small or large ELMs strongly depends on the inward fluctuation propagation from linear unstable to stable zone as profile evolves
 - ✓ High fluctuation intensity → multiple profile crashes → fast front propagation and deep penetration → large ELM (inward avalanche)
 - ✓ In close proximity to the instability threshold → low fluctuation intensity → no clear front propagation → small ELM (turbulence spreading)
- SOL width is significantly broadened from ELM-free to small ELM regime due to the strong radial turbulence transport
 - **\Box** The width λq can be broadened as
 - ✓ fluctuation energy intensity flux Γ_{ε} at LCFS increases
 - Enhanced the Drift-Alfvén turbulence
 - Increasing SOL local turbulence
 - Increasing pedestal Er flow shear, decreasing SOL ExB shear

BOUT++ simulations of small ELM dynamics and associated SOL width broadening

Thanks for your attention!

li55@llnl.gov

BOUT++ 2023 workshop January 9-11, 2023 Lawrence Livermore National Laboratory, Livermore, CA