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BOUT++ simulations are performed to investigate the underlying physics of 
small ELMs dynamics and the associated SOL width broadening 

v Small ELMs have been achieved by controlling strike points from 
vertical to horizontal divertor plates in EAST expts.

v 6-field 2-fluid turbulence code (6F):
ü Ion density 𝒏𝒊, ion and electron temperature 𝑻𝒊, 𝑻𝒆, ion parallel velocity
𝑽∥𝒊, parallel magnetic vector potential 𝑨∥ and vorticity 𝝕 equations

ü Peeling-Ballooning modes, Drift-Alfvén modes, ion diamagnetic effect, 
resistivity, parallel thermal conductions, etc.

v Small ELMs physics: turbulence spreading and its impact on heat 
flux width broadening

ü Based on EAST expts, 20 simulations for a scan 

• Pedestal collisionality 𝝂∗

• Pedestal density width/gradient 𝛁𝒏

• Pedestal radial electric field (Er) 

Large ELMs
Small ELMs
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Small ELMs can be triggered by increasing separatrix density 
and/or decreasing pedestal density gradient

1. Small ELMs have been achieved with increasing SOL density by controlling strike points from 
vertical to horizontal divertor plates as demonstrated in EAST expts.
ü Small ELMs can be triggered, either with 

• the ideal peeling-ballooning mode near the peak gradient of the pressure (#103745)  
or

• Local ballooning instability near separatrix (#103748)

#103745 #103748#103751
Separatrix density increasing (pedestal density gradient decreasing)

Large ELM Small ELM Small ELM

Small ELMs

Large ELMs
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@Peak gradient

Nami Li, PoP2022



1/10/23 Nami Li 4

Small ELMs can be triggered by marginally unstable modes

v Linear: in close proximity to instability threshold for
ü low-n peeling mode
ü high-n ballooning mode 
ü intermediate-n peeling-ballooning mode 
ü Local ballooning instability near separatrix

v Nonlinear: 
ü Inward avalanche due to multiple pedestal crashesà large ELMs
ü Inward turbulence spreading from linear unstable zone to stable zone 

à small ELMs

v Inward fluctuation intensity spreading
o The front propagation follows the sequence of multiple profiles 

collapsing: ∆𝒑𝒆𝒂𝒌
o The inward penetration as the intensity radial profile broadening: 
∆𝒏𝒐𝒏𝒍𝒊𝒏𝒆𝒂𝒓 − ∆𝒍𝒊𝒏𝒆𝒂𝒓
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Small or large ELMs strongly depend on the inward fluctuation spreading 
from linear unstable zone to stable zone

v For the large ELM (type-I ELM)
ü The linear mode (peeling-ballooning) is very 

unstable with large linear growth rate in the 
pedestal

ü The pressure fluctuation intensity at the onset 
of nonlinear phase is much stronger than that 
of the small ELM 

ü Inward avalanche:
The high pressure fluctuation intensity à
pedestal collapses à profile steepening 
inward à pedestal top gets into linear 
unstable zone à fast front propagation and 
deep diffusive penetration

Shot#103751

front propagation

diffusive penetration
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Small or large ELMs strongly depend on the inward fluctuation spreading 
from linear unstable zone to stable zone

v For the small ELMs
ü small ELMs can be triggered by marginally unstable mode

• low-n peeling mode, high-n ballooning mode or intermediate-n peeling-ballooning mode 
• The fluctuation intensity is low à pedestal gets into linear stable zone after the initial ELM crashà

there is no clear front propagation but with both inward and outward turbulence spreading

Shot#103745 Shot#103748diffusive penetration 
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v With increasing pedestal Er
ü The dominant mode shifts from high-n to low-n with a narrow 

mode spectrum
ü The maximum linear growth rate increases
ü The ELM size increases

A transition occurs from small ELMs to large ELMs 
with increasing pedestal ExB shear flow

v The ELM size depends strongly on the inward penetration depth ∆𝜓!



Nami Li 8

Small ELMs (reducing the ELM size ): 

How do pedestal plasma parameters impact on the turbulence 
spreading from pedestal to SOL? 

1/10/23
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Turbulence spreading increases as pedestal density gradient 
increases and pedestal collisionality decreases

v Fluctuation intensity ⁄$𝒑 𝒑 𝟐 at LCFS increases as 
pedestal gradient (𝛁𝒏𝒆 𝒐𝒓 𝛁𝑷𝟎) increases 
o Small ELMs

ü With high 𝝂𝒑𝒆𝒅∗ :  wide range of 𝛁𝒏𝒆 𝒐𝒓 𝛁𝑷𝟎window
ü With low 𝝂𝒑𝒆𝒅∗ :  narrow range of 𝛁𝒏𝒆 𝒐𝒓 𝛁𝑷𝟎window

v Fluctuation intensity ⁄$𝒑 𝒑 𝟐 at LCFS increases as 
pedestal collisionaltiy 𝝂𝒑𝒆𝒅∗ decreases
o Small ELMs

ü With large 𝜵𝒏𝒆 𝒐𝒓 𝛁𝑷𝟎 : very high 𝛎𝐩𝐞𝐝∗

ü With small 𝜵𝒏𝒆 𝒐𝒓 𝛁𝑷𝟎 : wide range of 𝝂𝒑𝒆𝒅∗ window

𝝂𝒑𝒆𝒅∗ ~0.108

𝝂𝒑𝒆𝒅∗ ~1

Large ELMs

Small ELMs

Large ELMs

Small ELMs

Large 𝛻𝑛!
Small 𝛻𝑛!
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Small ELMs: 

How does turbulence spreading affect the SOL width broadening?

We introduce fluctuation energy intensity flux 𝜞𝜺 at LCFS to measure 
turbulence spreading from pedestal into the SOL

𝜞𝜺 = 𝒄𝒔𝟐 $𝑽𝒓 ⁄'𝒑 𝒑 𝟐

1/10/23
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Divertor heat flux width is broadened in the small or grassy 
ELM regime due to the large turbulence transport

v 𝜆, increases with fluctuation intensity ⁄-𝑝 𝑝 - increasing at LCFS

v From small ELM to large ELM, 𝜆, is significantly broadened 

1/10/23
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v Divertor heat flux width is broadened by a larger radial turbulence transport 
ü Fluctuation energy intensity flux 𝜞𝜺 at LCFS measures the turbulence spreading from pedestal 

into the SOL

ü Heat flux width increases with Γ/ increasing

BOUT++ turbulence simulations show 𝜆𝑞 is significantly broadened from 
ELM-free to small ELM regime as fluctuation energy intensity flux increases

Γ/

Γ1 = 𝑐23 &𝑉4 ⁄)𝑝 𝑝 3

No ELMs

Small ELMs

Large ELMs
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• 𝜆𝑞 is broadened by increasing fluctuation energy 
intensity flux 𝜞𝜺 at LCFS[1]

• Drift-Alfvén turbulence enhances the turbulence 
spreading from pedestal to SOL, leading to SOL 
width broadening

• 𝜆𝑞 increases with increasing SOL local instabilities

• 𝜆𝑞 increases with increasing Er shear flow in the 
pedestal
ü The stronger Er shear flow shifts the most unstable 

modes to lower-n and narrows the mode spectrum [2,3] à
fluctuation energy intensity flux 𝛤/ à pedestal turbulence 
spreading enhanced

• 𝜆𝑞 decreases with sufficiently increased SOL ExB
shear – shear suppression of turbulence spreading

SOL ExB shear increasing 

pedestal Er increasing 

w/ SOL driven 

BOUT++ turbulence simulations show the SOL width 𝜆𝑞 is 
significantly broadened via controlling of edge fluctuation

Γ1 = 𝑐23 &𝑉4 ⁄)𝑝 𝑝 3

Drift-Alfvén

[1] Xu Chu et al., NF 62 (2022) 066021, [2] Y. Zhang et al., PoP 26, 052508 (2019); [3] J.G. Chen et al., PoP 24, 050704 (2017)



Summary

Ø Operating in H-mode with small ELMs offers promise to solve two 
critical problems: reducing the ELM size and broadening the SOL width 

Ø Small or large ELMs strongly depends on the inward fluctuation 
propagation from linear unstable to stable zone as profile evolves
ü High fluctuation intensity à multiple profile crashes à fast front propagation 

and deep penetration à large ELM (inward avalanche)
ü In close proximity to the instability threshold à low fluctuation intensity à no 

clear front propagation à small ELM (turbulence spreading)

Ø SOL width is significantly broadened from ELM-free to small ELM 
regime due to the strong radial turbulence transport
q The width 𝜆𝑞 can be broadened as 

ü fluctuation energy intensity flux Γ0 at LCFS increases
• Enhanced the Drift-Alfvén turbulence
• Increasing SOL local turbulence
• Increasing pedestal Er flow shear, decreasing SOL ExB shear
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