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@| Low-n is an issue for full torus nonlinear simulation in BOUT++

BOUT++ as a tokamak edge simulation code [Dudson+ CPC'09]

* Moderate- (O(n)>1) and high-n (O(n)>>1) modes can be with high accuracy
by dual coordinate system (field-aligned coordinates & flux-surface coordinates)

» Field solver for flow potential is reduced to 1D problem with flute-ordering

* Low-n (O(n)~1) modes sometimes suffer numerical instability due to the usage of
flute-ordering k/=0 in the field solver calculating flow potential

» Computational domain can be limited to wedge torus for numerical instability
as well as for saving computational cost
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@| Low-n is an issue for full torus nonlinear simulation in BOUT++

BOUT++ as a tokamak edge simulation code [Dudson+ CPC'09]

* Moderate- (O(n)>1) and high-n (O(n)>1) modes can be with high accuracy with
dual coordinate system (field-aligned coordinates & flux-surface coordinates)

» Field solver for flow potential is reduced to 1D problem with flute-ordering

* Low-n (O(n)~1) modes sometimes suffer numerical instability due to the usage of
flute-ordering k/=0 in the field solver calculating flow potential

» Computational domain can be limited to wedge torus for numerical instability
as well as for saving computational cost

» Improving low-n modes (taking full annular torus domain) is a key for more reliable
tokamak edge simulations

* Convergence of core ITG turbulence against wedge number [K. Kim PoP2017]

* Nonlinear stabilization of ELM by muti-mode interaction [P.W. Xi PRL2014]
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Large wedge number N can result in “false convergence”

in core ITG turbulence [by XGC1, K. Kim PoP2017]

Fig. 7 in K. Kim et al, Phys. Plasmas 24, 012306 (2017)
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wedge number

Full-f core ITG turbulence simulations with different wedge numbers N (1/N wedge tori)

non-negligible heat transport reduction between N=2 and N=3

* Convergence study in wedge number is needed to avoid “false convergence”

» Convergence study in wedge number can be also important for edge turbulence
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@) Nonlinear stabilization effect by mode-mode coupling can change

SMS: Simulation

MMS: Simulation

with single-mode

with multi-mode

initial perturbation

initial perturbation

ELM crash criteria [by BOUT++, P.W. Xi PRL2014]
Fig. 1in P.W. Xi et al, Phys. Rev. Lett 112 (2014) 085001

2R /B5(%)
o
®

I Pﬂ
s SMS, t=14074
mm— SMS, t=30071x

no ELM
(turbulence)

— P
= mm SMS, t=1407a
== == SMS, t=3007a

.0
04

08 1.0
v,

06

1.4¢
1 1.2f
{sr1.0F
1o

) go.e-
iz 0.6f
15 04f

SMS t=1401 (b)

SMS t =3001. (c)

MMS t=1407. (€)

P

MMS t=3007 ()

P

Simulation with multi-mode initial perturbations and with single mode perturbation in
1/5t annular wedge torus captures the bifurcation between ELM and turbulence
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m) Full torus run is needed to handle complete set of nonlinear mode-mode couplings
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ff?} Objective of this work

BOUT++ framework is extended with a hybrid field solver to address to full
annular tokamak edge simulations, which is a key for

*  Current-driven (low-n) giant ELMs

* ELM control by RMPs, edge turbulence with RMPs
*  Convergence study against the wedge number for edge turbulence

*  ELM crash with interplay between n=0 flow, low-n MHD and high-n turbulence
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* Summary



Low-n field solver is discretized in flux surface coordinates

2D Helmholtz Eq. for toroidal mode » defined in flux surface coords. (¥,0,()

( a1 1VC v +a) f%,.2) = h(x. .2 (x,y,2): field-aligned coordinates
—= i * LA il d (¥,6,¢): flux-surface coordinates

d 9 d d
10 11 20 . 123 22 . 130 2733
% d [Lfs _31/1 + L —3102 + (Lfs + inLg; ) %0 + L§; 302 +inLy —n“Lg, ] F(y,0In)

coordinate transform 1/ 4 dc @
in Fourier space +- (
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C fs 50

) F(y,6In) +aF(y,0in) = H(Y, 6In)




Low-n field solver is discretized in flux surface coordinates

2D Helmholtz Eq. for toroidal mode » defined in flux surface coords. (¥,0,()

( a1 1VC v +a) f%,.2) = h(x. .2 (x,y,2): field-aligned coordinates
—= i * LA il d (1,6,0): flux-surface coordinates

d 9 d d
10 11 20 . 123 22 . 130 2733
% d [Lfs _31/f + L —3102 + (Lfs + inLg; ) %0 + L§; 302 +inLy —n“Lg, ] F(y,0In)

coordinate transform 1 ( , dc 9

. : 42
in Fourier space p

——+GZ%1 +inG38—C
5oy oy 5360 06 596

) F(y,6In) +aF(y,0in) = H(Y, 6In)

* Discretized with 4th order central differences on (y,0)-plane and solved
iteratively by GMRES + AMG precondition with PETSc and Hypre libraries

» Problem size: one matrix of O(Ny*Np) rather than N, matrices of O(V,)

> Slower than the flute-ordered solver but more stable for low-n modes



Low-n field solver is discretized in flux surface coordinates

2D Helmholtz Eq. for toroidal mode » defined in flux surface coords. (¥,0,()

( a1 1v v +a) F%..2) = h(x, 3. 2) (x,y,2): field-aligned coordinates
—VC- » Y o s Yo .
—= i * 2 : (v,0,9): flux-surface coordinates

d 9 d d
10 11 20 . 123 22 . 130 2733
% d [Lfs _3l/f + L —3102 + (Lfs + inLg; ) %0 + L§; 302 +inLy —n“Lg, ] F(y,0In)

coordinate transform 1/ 4 dc @
in Fourier space +- (

G120 L | gl
5oy oy 5360 06

C fs 50

) F(y,6In) +aF(y,0in) = H(Y, 6In)

* Discretized with 4th order central differences on (y,0)-plane and solved
iteratively by GMRES + AMG precondition with PETSc and Hypre libraries

» Problem size: one matrix of O(Ny*Np) rather than N, matrices of O(V,)
» Slower than the flute-ordered solver but more stable for low-n modes

«  The number of poloidal grids Ny should be same as that of parallel grids N,
for transform between field-aligned (x,y,z) and flux surface (y,60,{) coordinates

» Poloidal resolution be fine enough for resonant poloidal modes m,..=nq

» Hybrid field solver (low-n: 2D solver + high-»: 1D solver) is reasonable
from the viewpoint of computational cost 8



A hybrid field solver for full annular tokamak edge simulation

field-aligned coordinates  flux-surface coordinates (Fourier space)

T =1 — 1o
Inputs FFT & Phase shift: { = z + « y=

@[H(?/J,@,’n)] a:/QB—CdH
1 6o

(2D field solver for ) (1D field solver for )
@ 0 S n S N2Dmax N2Dmax < N S N1Dmax
F(,0ln) = LoypH(w,0ln)| | F($10,n) = L1 H (3]0, n))
| 4
[ N2Dmax M 1Dmax :
@\ F@.0,n)= > F@,6ln)+ > Fl6n)
Olltpllt n’'=0 N/ =N2Dmax+1
Phase shift & FFT: z = ( — «

The maximum toroidal mode number solved by 2D field solver n2pmax is a free
parameter and should be chosen carefully not to affect simulation result
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annular tokamak edge simulation

Pedestal collapse with resistive drift-ballooning mode (RDBM) turbulence in
full annular torus with shifted circular cross section

» Scan of the maximum toroidal mode number solved by 2D field solver
against pedestal collapse
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» Nonlinear generation on=1 global mode during pedestal collapse

Summary
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* IBM marginally unstable

(a): equillibrium plasma profile

L
=

shifted circular equilibrium (Rax=3.5m, Bax=2T)

» Energy loss level

|E - PO

S T o) Vped is the volume
L1 9 AWoed/Woea = / PdvV/ / P,dv, inside the VP peak
< \ S Voed Voed (shaded region)
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* Scale separated 4-field RDBM model [Seto+ CPP'20] I T DT e e Tota
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Vai is the whole simulated domain

(b): hnear growth rate of DRBM 1nstab111ty
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» Initially most unstable toroidal mode: n=32 toroidal mode number:n 4 1



@ Sensitivity scan of n2bmax against full annular torus pedestal

collapse simulation
3 runs with different nopax =4, 8, 12 with Nx=516, Ny=256, Nz=256, npn.x=80

(a): energy loss level AWped/Wpeq

MDmax =4

0.06|| — "2Dmax=8 | :
—— N2Dmax = 12

—s  (b): perp. kinetic energy Win
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@) Sensitivity scan of n2bmax against full annular torus pedestal

collapse simulation
3 runs with different nopmax = 4, 8, 12 (Nx=516, Ny=256, Nz=256, Nn1pmax=80)

(a): energy loss level AWpe o/ Wied | (c) early nonhnear phase |
107} : & t—210tA 3

MDmax =4

0.06! | — "20max =8
— M2Dmax = 12

(d) around pedestal collapse
s 1=313t4 "
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[ ]
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=10 n:
B g
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time: £ [t4] toroidal mode number: n

Nopmax =4 1S high enough in this simulation setup 12



@) Toroidal domain length qualitatively changes energy loss

orocess during pedestal collapse

0.08 ___(a): energy loss level AWpea/Wpea quarter and full toru run with
Nx=1028, Ny=128, Nz= 64 or 256,
] n2Dmax=4'! n1Dmax=80

— 0.06}
=
<
200l | *+ Resultant energy loss and n=0
= and n=0 amplitude of kinetic
=3 energy saturate to similar levels
< 0.02}
0.00
10°
10 °F

Wiin [B2/2u0]
=

100 150 200 250 300 350 400 450 500
time: ¢ [£4]
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@ Toroidal domain length qualitatively changes energy loss

orocess during pedestal collapse

0.08 (a): energy loss level AWpea/Wpea quarter and full toru run with
pedestal collapse Nx=1028, Ny=128, Nz= 64 or 256,

— 0.06] t=315t, 1 N2bmax=%4; N1pmax=80
=
S, pedestal
% 4| COllAPSE — | * Resultant energy loss and n=0
= 7| =231, and n=0 amplitude of kinetic
=3 energy saturate to similar levels
< 0.02}
— quarter . . .
— ful » There are qualitative difference
(1)(;)2 | (b): perpendlcular klnetlc energy ka durlng pedeStaI CO”apse'
10 °}
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=

100150 200 250 300 350 400 450 500
time: ¢ [#4]
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@ Initially unstable modes directly trigger the pedestal collapse

and then n=0 & low-n modes are excited in quarter torus
— 0.08 (a): energy loss level AWped/Wped
) . ): energ \ . \

< 0.06 Pedestal :
< | collapse =—:
= 0.04F — 231¢, ‘

== quarter| |
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(a): energy loss level AWeq/Woed

pedestal collapse _,,
t=313t, :

— full| |

(b): perp. kinetic energy Win

200 250 300 350 400
time: ¢ [#4]

Wiin [B2/240]
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(a): energy loss level AWeq/Woed

| pedestal collapse

— full| |

s (b): perp. kinetic energy Win

|
100 150 200 250 300 350 400 450 500
time: ¢ [#4]

10

10" The observation of
collapse delay in full
torus is qualitatively
consistent with the

_,, Stabilization by nonlinear
9" mode couplings
" [Xi+ PRL14]
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n=1 global mode is nonlinearly excited and coexists with fine-

scale turbulence during the pedestal collapse in full torus case

(a): n#0 electrostatic potential during pedestal collapse(t=330t,)
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n=1 global mode is nonlinearly excited and coexists with fine-scale

turbulence during the pedestal collapse in full torus case

(a): n#0 electrostatic potential during pedestal collapse(t=330t,)

(b): m/n=2/1 electrostatic potential (c): m/n=2/1 magnetic potential

Aj

Global n=1 structure has
m/n=2/1 tearing parity

1.0 1.0
= 05 0.5
=
= 00 0.0
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£-05 0.5
~1.0] ~1.07
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20 25 30 35 40 45 50 20 25 30 35 40 45 50
major radius [m] major radius [m]
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Pedestal collapse with resistive drift-ballooning mode (RDBM) turbulence in
full annular torus with shifted circular cross section
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against pedestal collapse

» Impact of truncated toroidal domain on energy loss process

» Nonlinear generation on=1 global mode during pedestal collapse

Summary

17



@)
o Summary

BOUT++ has been extended for full annular tokamak edge simulations by
hybrid field solver, which covers n=0, low-n, moderate-n and high-n modes

» A key improvement for more self-consistent simulations of low-n mode relevant
edge MHD and turbulence physics (type-I ELM, ELM control by RMPs,
turbulence with RMPs, etc..)

« Full annular pedestal collapse simulation has been carried out and has been
compared with that with the quarter torus domain

» The truncated toroidal domain can qualitatively change the energy loss
process during the pedestal collapse

> Interplay between m/n=2/1 tearing like global structure and high-n fine-scale
turbulence is observed during the pedestal collapse in the full torus case

« On-going works
» Benchmark of 2D field solver against low-n modes

» Full annular pedestal collapse simulation in single-null diverted geometry
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@ Spatiotemporal structure of n=0 flow shear, low-n and high-n fluctuations

11 (a): n=0 EX B shearing rate wgxp [wa]: (full) * Fine-scale zonal ﬂOW IS

" 7 +0.20 generated by nonlinear

= +0.10 couplings between high-n
000 modes (t~200ta)

~0.10

020 ° Meso-scale zonal flow is then
generated when low-n

+0.90

fluctuations are excited by
+0.60 nonlinear couplings between
+0.30 high-n modes (t=200ta~300ta)

+0.00 * Large-scale mean flow is
generated during pedestal

(c): n=9~ 80 turb. intensity S§°[107>V4BR]: (full)
9

+0.90

: collapse (t >330ta)
0.9 +0.60
50.8 . .
0.7 1030 °* Low-n fluctuations has radially
82 P elongated structure compared
150 200 250 300 350 400 450 500 with high-n fluctuations

time: 7 [#4]

Details of generation mechanism of n=0 flow, those of interplay

between n=0, low-n, and high-n modes are under investigation .



Simulation setup for verification test of 2D field solver
against IBM instability

Linearized 3-field IBM model
U J J
a—tl —Boau (ég) + By [A||1,é(j)} +K(P1),
o4,

ot

* Normalized with poloidal Alfven units with
R=3[m], B=2[T], ni=10'" [m], deuterium mass [Dudson CPC’09]

~0)¢1, * Original BOUT++ employs flute-ordering in
Field solver for electrostatic potential

1
(V2 + B39 g5 - V. ) 61 = B30
0

- [¢1a PO] 0:0

N nj nj
& (_OVL¢1) = 0Vi¢ +V (—0) -Viér,

B2 Bt

ViA,

Bg
XS Laplacian operator for parallel current density

by V5, (fyg)= DTNy ooV

g
=

IBM strongly unstable shifted circular equilibrium
[Snyder PoP’02, Wilson PoP'02]

. Equilibrium used in cross-code benchmarks
[Dudson CPC’09, PPCF’11, Ferraro PoP’10
etc...]
* |IBM growth rates are calculated with 1D & 2D solver masitiig
in 1/N-th annular wedge domains for ~=N mode - “‘:‘:‘*‘x\s

=J 0 [=B/uoR]

—
W

Height: Z [m]
=
safety factor: ¢

NN
D
R
R

o
n

Nx

Ny

Nz

z—len&

1D field solver & Laplacianl 512

64

32

2n/N

2D field solver & Laplacian

512

32

21/N

RS
$§’¢

1,5 20 25 30 35 40 45 50

Major radius: R [m]

Po [1072 x B*/2u9] and

0'8.4 05 0.6 07 0.8 09 1.0 1.1 1.5

.

normalized radial label: y




@) 2D field solver can get n=20 IBM but flute-ordering has impact

on low-n regime

(b): growth rates highlighting n =15 ~ 20

....... _()‘?,5\
0.25¢ T“““Tff“ ;
1 ‘ 1
1 é ¢ 1
o ___
020} ‘ R 6 'g;‘ _ 0.24} .
§‘ $ ‘\ § A
2 0.15 . . )
-5 0.151 A s
E . v 2 023} A
S L 'Y S
- A e
5 0.10f & 5. R
80 e o
A ' bD‘().22 !
e o 7D field solver & Laplacian s
0.05f° |a a 1D field solver & Laplacian |1 . [t
= = 5=20BOUT++ (Ref. [14]) s
e o pn=20ELITE (Ref. [14]) “
000L—— . | L 021~ ' ' ‘ ‘ :
567 891011121314151617181920 15 16 17 18 19 20
toroidal mode number: n toroidal mode number: n

* n=20 IBM growth rate by 2D field solver shows good agreement with the
previous work [Ref. [14] Dudson CPC’09]

* The difference between growth rates by 2D solver and those by 1D solver
becomes larger for lower-n modes

®) Qualitatively consistent with the expected flute-ordering correction of O(1/n)
[Connor PRSA’79]



flux-surface & field-aligned coords. are used with shifted metric

quarter torus domain: (y,6,{)

0

R[m] 5.0

* Need fine pol.(6) grids for
parallel difference m, .= ng

* No cell deformation by
magnetic shear

| Used for (,)-difference




P
&SI)T flux-surface & field-aligned coords. are used with shifted metric

7

quarter torus domain: (y,6,{)
1.5

Z [m]

L
0 R[m]

Need fine pol.(f) grids for
parallel difference m, .= ng

* No cell deformation by
magnetic shear

| Used for (,)-difference

5.0

N\

shift: z=(-a
>
T =1 — o
y =0
z2=(—«
0 ¢
o= %d@
<
shift: { =z+«a

s

quarter torus domain: (x,y,z)

1.5

'g‘ Z a=0
<G

~ S

130 R[m] 5.0

* Need only coarse para.(y)
grids for parallel difference

* Radial difference is degraded by
cell-deformation

Used for (y,z)-difference

N\




P
&SI)T flux-surface & field-aligned coords. are used with shifted metric

N\

i quarter torus domain: (y,6,{) | Shift: .= r quarter torus domain: (x,y,z)
1.5 2=¢ a» 1.5
NIV _ g Z
|G ' =0 T =1 — o < G
N N
L& ' _1 Lx
130 R[m] 50 || z2=¢ -« 30 R[m] 3.0
* Need fine pol.(6) grids for o — ’ B_Cdg * Need only coarse para.(y)
parallel difference m, .= ng ~ B° grids for parallel difference
* No cell deformation by * Radial difference is degraded by
magnetic shear <h'ft . cell-deformation
shift: ¢ = :
' Used for ({,))-difference ) { ~ota | Used for (y,z)-difference )

1
 Helmholtz Eq. of flow potential: (dVi +2Ve vy +a) fx,y,2)=hx,y,2)

» Eq. for toroidal mode n in quasi-ballooning coords. has ¢~ and y- derivatives
3 32 , ) 32 1( ., 0c 0 , 0C @ . 3 dC _
d[L;gW+L;gW+(ng+ng§) @+Léﬁm+ngg—n2Lgﬁ]F+z (cqbw@wqb@@ +inGYy o ) F+aF =H

3 32 1 dc 9 dc
10 11 . 130 2733 1 .3
q d (qu _31/f + qu—alﬁz e lnqu —n qu) F(y|6,n) + S (qu _allf —31/f + qub _3y) F(y|0,n) +aF(y|0,n) =H(y|0,n)

Flute-ordering reduces Eqg. to 1D (y-dir) but can give numerical instability on low-n ¢



