
BOUT++ overview
Ben Dudson

BOUT++ workshop 9th January 2023

Thanks to contributors including: Peter Hill, Mike Kryjak, Joseph Parker,
John Omotani, David Dickinson, Yining Qin, Steven Glenn, Xueqiao Xu,
and the BOUT++ team

This work was performed in part under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

BOUT++	is	an	ecosystem	of	plasma	simulation	tools

Meshing FD, FV
methods

Time
integrators

BOUT++

Models Post-processing

Hypnotoad
grid generator

elm-pb
(3,4,5,6-field)

Gyro-fluid
models

Trans-neut
STORM

Hermes

SOLT3D

I/O MPI Testing

Pre-processing

SD1D

BOUT++	underpins	many	different	models	

● Solves nonlinearly coupled hyperbolic,
parabolic and elliptic equations

● MPI-parallelised, scales to ~4,000 cores,
depending on problem size

● Turbulence ~106—108 unknowns, ~105

core-hours

Edge Localised Modes (LLNL)

Magnetic reconnection

Plasma turbulence
Transport
(MAST-U)

https://github.com/boutproject/

BOUT++	is	open	source

http://boutproject.github.io/

● Open source, users/developers worldwide
● Strong community, and investment in building

capabilities to underpin research
Top contributors

Peter Hill
Ben Dudson
David Dickinson
David Schworer
John Omotani
Michael Loiten
Joseph Parker
Jens Madsen
Jarrod Leddy
George Breyiannis
Brendan Shanahan
Ilon Joseph
Hong Zhang
+ ~35 others

https://github.com/boutproject/
http://boutproject.github.io/

BOUT++	is	open	source
● Open source, users/developers worldwide
● Strong community, and investment in building

capabilities to underpin research
Top contributors

Peter Hill
Ben Dudson
David Dickinson
David Schworer
John Omotani
Michael Loiten
Joseph Parker
Jens Madsen
Jarrod Leddy
George Breyiannis
Brendan Shanahan
Ilon Joseph
Hong Zhang
+ ~35 others

13 years, multiple major
code redesigns and

overhauls

https://github.com/boutproject/ http://boutproject.github.io/

C
om

m
its

v5.0

https://github.com/boutproject/
http://boutproject.github.io/

Overview

● BOUT++ structure

● Major changes
○ GPUs: RAJA and Hypre
○ 3D geometries: The FCI method

● Hermes-3: Building on BOUT++

BOUT++	uses	matrix-free	Method	of	Lines

ODE time integrator

Physical model (rhs function)

Evolving fields e.g.
densityElliptic

solvers

Spatial
derivatives

Arithmetic
operators

Communication

Time
derivatives of

each field

ddt(n) = -bracket(phi, n)
+ 2 * DDZ(n) * rho_s
+ D_n * Delp2(n);

ddt(omega) = -bracket(phi, omega)
+ 2 * DDZ(n) * rho_s / n
+ D_vort * Delp2(omega) / n;

phi = laplacian->solve(omega);

https://github.com/boutproject/BOUT-dev/tree/master/examples/blob2d

Close	correspondence	between	model	and	code

Domain-specific language in C++

https://github.com/boutproject/BOUT-dev/tree/master/examples/blob2d

● Choice of numerical method for each operator
● Can be specified at runtime or compile time
● A flexible input configuration format, with arbitrary expressions (Turing complete)

blob2d.cxx source code:
ddt(n) = -bracket(phi, n, BRACKET_ARAKAWA)

+ 2 * DDZ(n, CELL_CENTRE, "FFT") * rho_s
+ D_n * Delp2(n);

BOUT.inp input file:
[mesh]
nx = 64
ny = 1
nz = 64

[mesh:ddx]
first = C4
second = C2
[mesh:ddz]
first = U2

Command line:
./blob2d solver:type=rk4 laplace:type=petsc

mesh:nx=128

Guiding	principle	of	BOUT++	is	flexibility

Improvement	in	performance	over	time

Elliptic inversion bottleneck

CPU only, pure MPI, 512 x 64 x 16 grid

R
un

 ti
m

e
[s

]

Overview

● BOUT++ structure

● Major changes
○ GPUs: RAJA and Hypre
○ 3D geometries: The FCI method

● Hermes-3: Building on BOUT++

Major	changes	[Oct	2018	– Jan	2022]
● Regions for iterating over arbitrary domains. Improved vectorization and OpenMP performance

[v4.2, 4.3]
● Consistent support for staggered grids [v4.2 – v5]
● Improved support for 3D coordinates and complex boundaries [v4.3 – v5]
● Input file language extended, internationalized [v4.3]
● Adopted the CMake build system [v4.4 – v5]
● Input & output data provenance tracking [v4.4-v5]
● Replaced I/O system, using flexible dictionary structure to exchange data [v5]
● GPU and CPU improved performance with RAJA [v5]
● New steady-state solver for transport problems, borrowing from UEDGE [v5]
● Many more tests: Now 1853 unit, 61 integrated, and 22 MMS tests

Version 5 has 3,699 commits, 91k lines changed, compared to v4.4.2
https://github.com/boutproject/BOUT-dev/pull/2604
Currently in the “next” github branch

https://github.com/boutproject/BOUT-dev/pull/2604

Balancing	usability	and	performance

ddt(n) = -bracket(phi, n)
+ 2 * DDZ(n) * rho_s
+ D_n * Delp2(n);

This has 9 separate kernels, each
with a loop over the domain

● In BOUT++ functions operate on whole fields (arrays of data)
○ Simple interface for non-C++ experts
○ Each operation (+,-,*,/, DDX) loops over the domain
○ These loops are too small to parallelise efficiently (esp on GPUs)

● In BOUT++ functions operate on whole fields (arrays of data)
○ Simple interface for non-C++ experts
○ Each operation (+,-,*,/, DDX) loops over the domain
○ These loops are too small to parallelise efficiently (esp on GPUs)

2D*3D

260 µs

3D+3D
3D/2D3D/Re
al3D*2D

Steve Glenn, Bill Meyer (LLNL)

Nvidia profiler

Balancing	usability	and	performance

Code	transformation	methods

MACROS

C++ templates

Code generation

✔ Conceptually simple

✔ Familiar to most programmers

✖ Works on a text level, not semantic

✖ Can lead to surprising bugs (text mangling)

✖ No access to type information

✖ Not suitable for complex transformations

Used in BOUT++ to reduce “boilerplate”, and define loops
that can be changed at compile time (e.g. OpenMP, RAJA).

Code	transformation	methods

MACROS

C++ templates

Code generation

✔ General transformations (Turing complete)

✔ Widely used to merge loops
e.g. Eigen, xtensor, Blitz++, Kokkos, ...

✖ Unhelpful error messages

✖ Compilation can be slow

✖ Complex, requires experienced developers
to maintain and extend code

✖ Can run into compiler bugs

Used in BOUT++ to enable compile-time checks,
use types to specialise code

Code	transformation	methods

MACROS

C++ templates

Code generation

✔ General transformations

✔ Many different tools available

✔ Abstracts over implementation and architecture details

✖ Debugging can be very difficult

✖ Link between user code and performance
can be unclear

✖ May need to maintain code generation tool

Jinja template engine used in BOUT++ to
generate repetitious code (https://jinja.palletsprojects.com)

https://jinja.palletsprojects.com/

Using	RAJA	&	Umpire	to	port	to	GPUs

● RAJA provides mechanisms to generate CUDA code from C++:

✓ Provides a path for incremental porting existing code to GPUs
– Requires additional tools to manage memory. Umpire used here.
X A “leaky abstraction”: Details of memory, CUDA limitations matter

(especially with complex data structures)

RAJA::forall<EXEC_POL>(RAJA::RangeSegment(0, indices.size()),
[=] RAJA_DEVICE(int id) {

/* … your code here … */
})

Execution policy e.g CUDA. Compile-time choice

Iteration range

C++ lambda function body

● Aim to maintain usability, readability for physicists
● Incrementally transition from original code to improve performance
● Ease debugging (c.f. templates, code generation)

ddt(n) = -bracket(phi, n)
+ 2 * DDZ(n) * rho_s
+ D_n * Delp2(n);

BOUT_FOR(i, region) {

ddt(n)[i] = -bracket(phi, n, i)
+ 2 * DDZ(n, i) * rho_s
+ D_n * Delp2(n, i);

}

Original Merged loops
Macro: OpenMP, vectorise, RAJA

Opt-in	performance	tuning

Opt-in	performance	tuning	:	checks	outside	loops
● Borrow an API idea from SYCL: Lightweight wrappers of raw buffers
● Run-time checking performed on construction (outside loop)
● Template arguments enable compile-time checks, optimisations

auto n_acc = FieldAccessor<>(n);
auto phi_acc = FieldAccessor<>(phi);
auto jpar_acc = FieldAccessor<CELL_YLOW>(Jpar);

BOUT_FOR(i, region) {

ddt(n)[i] = -bracket(phi_acc, n_acc, i)
+ 2 * DDZ(n_acc, i) * rho_s
+ D_n * Delp2(n_acc, i);

}

Run-time checks

Compile-time type checking

Performance	improvements:	RAJA

Single-Thread, CPU-only

GPU-enabled Loop

Time

Loop: 17 ms

77 ms239 ms

423 ms

376 ms

248 ms

● GPU loop speedup = 77/17 ≈ 4.5X
● Overall speedup ≈ 423/376 ≈ 1.13X

Laplacian Inversion Loop

Laplacian Inversion

Running on Lassen, LLNL

● Only one kernel launch per
iteration, due to loop merging

● 1260 x 1256 grid for benchmarking

Ongoing	work	to	port	to	GPUs

● Merging kernels and RAJA works well
● Significant time can be spent in

inversion of elliptic operators
● Keeping GPUs busy can be hard
● Setup costs are significant

(note: matrix is time-dependent!)

GPU-enabled Loop
Loop: 17 ms

376 ms

248 ms
Laplacian Inversion

Test on Lassen

Solve

GPU	functionality	is	available	in	v5

● Check out the “next” (development) branch of BOUT++:

$ git clone -b next https://github.com/boutproject/BOUT-dev.git

● Manual page: https://bout-dev.readthedocs.io/en/latest/user_docs/gpu_support.html

● Examples
○ blob2d-outerloop

https://github.com/boutproject/BOUT-dev/tree/next/examples/blob2d-outerloop
○ hasegawa-wakatani-3d

https://github.com/boutproject/BOUT-dev/tree/next/examples/hasegawa-wakatani-3d
○ elm-pb-outerloop

https://github.com/boutproject/BOUT-dev/tree/next/examples/elm-pb-outerloop

https://bout-dev.readthedocs.io/en/latest/user_docs/gpu_support.html
https://github.com/boutproject/BOUT-dev/tree/next/examples/blob2d-outerloop
https://github.com/boutproject/BOUT-dev/tree/next/examples/hasegawa-wakatani-3d
https://github.com/boutproject/BOUT-dev/tree/next/examples/elm-pb-outerloop

Grid	generation	using	Hypnotoad

● Python grid generator,
mainly written by J.Omotani

● Can generate non-orthogonal grids,
here using orthogonal grids

● Interactive GUI or automated script
● Can adjust packing of cells around separatrix

and/or close to targets as needed

● Sequence of grids created for convergence
and performance testing

● Python tools for interpolating between grids

X-point Snowflake

W.A.J. Vijvers et al 2014 Nucl. Fusion 54 023009

Stellarator

Y Suzuki and J Geiger 2016 Plasma Phys. Control. Fusion 58 064004

Complex	meshing	problems	(2D	&	3D)

[8] F Hariri and M Ottaviani CPC 184 2419 (2013)
[9] B Shanahan, P Hill and B Dudson. Journal of Physics;

Conference Series 775, 012012 (2016)
[10] P Hill, B Shanahan and B Dudson CPC 213, 9-18 (2017)

Shifted metric (Dimits / Scott) : 1D interpolation

FCI: 2D interpolation

An illustration of the Flux Coordinate Independent
method for parallel derivatives [9].

FCI:	Field-line	following	+	interpolation

Gridding	of	poloidal	plane	independent	of	
magnetic	field	structure

http://bout-dev.readthedocs.io/en/latest/user_docs/zoidberg.html
Zoidberg

BSTING project
B.Shanahan, D.Bold

IPP Greifswald

http://bout-dev.readthedocs.io/en/latest/user_docs/zoidberg.html

Overview

● BOUT++ structure

● Major changes
○ GPUs: RAJA and Hypre
○ 3D geometries: The FCI method

● Hermes-3: Building on BOUT++

SD1D

B.Dudson et al PPCF 63 055013 (2021) https://doi.org/10.1088/1361-6587/abe21d
B.Dudson, J.Leddy PPCF 59 054010 (2017) https://doi.org/10.1088/1361-6587/aa63d2
J.Leddy, et al. Comp. Phys. Comm 212,59-68 (2017) http://dx.doi.org/10.1016/j.cpc.2016.10.009
J.Leddy, B.Dudson JNM (2016) https://doi.org/10.1016/j.nme.2016.09.020

Hermes (2D)
Hermes (3D)

Model	development:	SOL	&	Divertor	turbulence

Key features:
‘full-f’ : Evolve profiles + fluctuations
Includes transport physics e.g. neutrals

https://doi.org/10.1088/1361-6587/abe21d
https://doi.org/10.1088/1361-6587/aa63d2
http://dx.doi.org/10.1016/j.cpc.2016.10.009
https://doi.org/10.1016/j.nme.2016.09.020

Hermes-3:	Multi-species	transport	and	turbulence	models

● Arbitrary number of species and ionisation
states: D, T, He, Ne, …

● Full-f, flux-driven transport & turbulence

https://hermes3.readthedocs.iohttps://github.com/bendudson/hermes-3

Density
evolution Collisions

Multi-ion
sheath

ADAS

Amjuel
Pressure
evolution

Meshing FD, FV
methods

Time
integratorsBO

U
T+

+
H

em
es

-3
1D transport 2D transport

3D turbulence

https://hermes3.readthedocs.io/
https://github.com/bendudson/hermes-3

Recent	simulations	in	1-,	2- and	3D

● 1D transport of neon in deuterium SOL plasma
● Evolving each charge state and atomic species as a separate fluid

● 2D transport in DIII-D geometry
● Solve for deuterium, tritium and helium ions and atoms

● 3D turbulence and transport in LAPD
● Both isothermal, and hot electron (ionisation source). Single ion species

● 3D turbulence and transport in DIII-D & limiter plasmas
● Isothermal, single ion species to start with

System	of	equations	is	specified	in	the	input	file
● Top-level components specify the species, collective effects and modifiers

● Each species’ equations are:

[hermes]
components = (e, d+, sound_speed, vorticity,

sheath_boundary, collisions, polarisation_drift)

[e]
type = evolve_density, evolve_momentum, isothermal

[d+]
type = quasineutral, evolve_momentum, isothermal

Solving	drift-reduced	fluid	equations
Electrons

Ions

Drifts

Vorticity

𝒗!×# =
𝒃×∇𝜙
𝐵

𝜕𝜔
𝜕𝑡 = −∇ ⋅ 𝜔𝑣!×#

+∇ ⋅ 𝑛$%𝑣||$% − 𝑛'𝑣||'

3D	turbulence	in	LAPD	geometry
● Isothermal, single ion species, no neutrals
● Uniform source of particles in domain; sheath boundary at both ends
● Resolution: 64 x 16 x 64 (radial x parallel x azimuthal)

Density near axis,
middle of domain

Dudson APS-DPP 2022

We	can	run	turbulence	simulations	with	an	
arbitrary	number	of	ion	species	(e.g.	D	+	He)

Helium fraction

Radius
Electron density and helium fraction near sheath

● No code changes needed. Input file specifies species and equations
● Here showing deuterium and helium (1+) ions
● Fuelling at 50/50 ratio, enhanced helium fraction near sheaths

Dudson APS-DPP 2022

1D	multi-fluid	transport

TargetUpstream
(midplane)

Power into D+ ions
and electrons Log density

scale

● Model a 1D domain, from “upstream” (no-flow) to “target” (sheath)
● D+, Ne+ … Ne+10 ions, D & Ne atoms. Only plotting highest density species.

2D	transport	in	DIII-D	geometry
● Resolution: 64 x 128 (radial x poloidal, excluding boundary)
● D+, T+ and He+ ions; D, T and He atoms (fluids)

Midplane

2D	transport	in	DIII-D	geometry
● Resolution: 64 x 128 (radial x poloidal, excluding boundary)
● D+, T+ and He+ ions; D, T and He atoms (fluids)

Outer target

Different ion
temperatures

Flexible	tool	for	edge	simulations
Note:	under	development
● All of these simulations run the same executable

● Species, equations & reactions are configured in input file
● Geometry (1,2,3D; linear, tokamak) in input or separate mesh file

● Atomic reactions and multi-ion support:
● Hydrogen and helium atomic reactions from Amjuel
● Neon reactions from ADAS
● Tskhakaya & Kuhn multi-ion sheath boundary conditions

● Many solver / time integration options, making use of PETSc, Hypre &
SUNDIALS

Tskhakaya, David and S. Kuhn. “Boundary conditions for the multi-ion magnetized plasma-wall transition.” JNM 337 (2005): 405-409.

Some	applications
Note:	under	development

● Tokamak edge and divertor transport & turbulence modelling
● Including neutrals, impurities and drifts
● Comparison to DIII-D data, particularly impurity injection effects on

turbulence

● Multi-ion plasma turbulence
● Validation on LAPD (experiments proposed)
● More work on multi-ion closures probably needed

● Interested?
● Github repository : https://github.com/bendudson/hermes-3
● Manual : https://hermes3.readthedocs.io/

https://github.com/bendudson/hermes-3
https://hermes3.readthedocs.io/

Conclusions

● BOUT++ underpins a wide range of research

● Continues to develop to meet research needs,
with contributions from a global community

Thank you to all contributors!

Welcome to the 2023 BOUT++ workshop!

