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BOUT++	is	an	ecosystem	of	plasma	simulation	tools
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BOUT++	underpins	many	different	models	

● Solves nonlinearly coupled hyperbolic, 
parabolic and elliptic equations

● MPI-parallelised, scales to ~4,000 cores, 
depending on problem size

● Turbulence ~106—108 unknowns, ~105

core-hours

Edge Localised Modes (LLNL)

Magnetic reconnection

Plasma turbulence
Transport
(MAST-U)



https://github.com/boutproject/

BOUT++	is	open	source

http://boutproject.github.io/

● Open source, users/developers worldwide
● Strong community, and investment in building 

capabilities to underpin research
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Overview

● BOUT++ structure

● Major changes
○ GPUs: RAJA and Hypre
○ 3D geometries: The FCI method

● Hermes-3: Building on BOUT++



BOUT++	uses	matrix-free	Method	of	Lines

ODE time integrator

Physical model (rhs function)
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ddt(n) = -bracket(phi, n)
+ 2 * DDZ(n) * rho_s
+ D_n * Delp2(n);

ddt(omega) = -bracket(phi, omega)
+ 2 * DDZ(n) * rho_s / n
+ D_vort * Delp2(omega) / n;

phi = laplacian->solve(omega); 

https://github.com/boutproject/BOUT-dev/tree/master/examples/blob2d

Close	correspondence	between	model	and	code

Domain-specific language in C++

https://github.com/boutproject/BOUT-dev/tree/master/examples/blob2d


● Choice of numerical method for each operator
● Can be specified at runtime or compile time
● A flexible input configuration format, with arbitrary expressions (Turing complete)

blob2d.cxx source code:
ddt(n) = -bracket(phi, n, BRACKET_ARAKAWA)

+ 2 * DDZ(n, CELL_CENTRE, "FFT") * rho_s
+ D_n * Delp2(n);

BOUT.inp input file:
[mesh]
nx = 64
ny = 1
nz = 64

[mesh:ddx]
first = C4
second = C2
[mesh:ddz]
first = U2

Command line:
./blob2d solver:type=rk4 laplace:type=petsc

mesh:nx=128

Guiding	principle	of	BOUT++	is	flexibility



Improvement	in	performance	over	time

Elliptic inversion bottleneck

CPU only, pure MPI, 512 x 64 x 16 grid
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Major	changes	[Oct	2018	– Jan	2022]
● Regions for iterating over arbitrary domains. Improved vectorization and OpenMP performance 

[v4.2, 4.3]
● Consistent support for staggered grids [v4.2 – v5]
● Improved support for 3D coordinates and complex boundaries [v4.3 – v5]
● Input file language extended, internationalized [v4.3]
● Adopted the CMake build system [v4.4 – v5]
● Input & output data provenance tracking [v4.4-v5]
● Replaced I/O system, using flexible dictionary structure to exchange data [v5]
● GPU and CPU improved performance with RAJA [v5]
● New steady-state solver for transport problems, borrowing from UEDGE [v5]
● Many more tests: Now 1853 unit, 61 integrated, and 22 MMS tests

Version 5 has 3,699 commits, 91k lines changed, compared to v4.4.2
https://github.com/boutproject/BOUT-dev/pull/2604
Currently in the “next” github branch

https://github.com/boutproject/BOUT-dev/pull/2604


Balancing	usability	and	performance

ddt(n) = -bracket(phi, n)
+ 2 * DDZ(n) * rho_s
+ D_n * Delp2(n);

This has 9 separate kernels, each 
with a loop over the domain

● In BOUT++ functions operate on whole fields (arrays of data)
○ Simple interface for non-C++ experts
○ Each operation (+,-,*,/, DDX) loops over the domain
○ These loops are too small to parallelise efficiently (esp on GPUs)



● In BOUT++ functions operate on whole fields (arrays of data)
○ Simple interface for non-C++ experts
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2D*3D

260 µs

3D+3D
3D/2D3D/Re
al3D*2D

Steve Glenn, Bill Meyer (LLNL)

Nvidia profiler

Balancing	usability	and	performance



Code	transformation	methods

MACROS

C++ templates

Code generation

✔ Conceptually simple

✔ Familiar to most programmers

✖ Works on a text level, not semantic

✖ Can lead to surprising bugs (text mangling)

✖ No access to type information

✖ Not suitable for complex transformations

Used in BOUT++ to reduce “boilerplate”, and define loops 
that can be changed at compile time (e.g. OpenMP, RAJA).



Code	transformation	methods

MACROS

C++ templates

Code generation

✔ General transformations (Turing complete)

✔ Widely used to merge loops 
e.g. Eigen, xtensor, Blitz++, Kokkos, ...

✖ Unhelpful error messages

✖ Compilation can be slow

✖ Complex, requires experienced developers
to maintain and extend code

✖ Can run into compiler bugs

Used in BOUT++ to enable compile-time checks,
use types to specialise code



Code	transformation	methods

MACROS

C++ templates

Code generation

✔ General transformations 

✔ Many different tools available

✔ Abstracts over implementation and architecture details

✖ Debugging can be very difficult

✖ Link between user code and performance
can be unclear

✖ May need to maintain code generation tool

Jinja template engine used in BOUT++ to 
generate repetitious code (https://jinja.palletsprojects.com)

https://jinja.palletsprojects.com/


Using	RAJA	&	Umpire	to	port	to	GPUs

● RAJA provides mechanisms to generate CUDA code from C++:

✓ Provides a path for incremental porting existing code to GPUs
– Requires additional tools to manage memory. Umpire used here.
X A “leaky abstraction”: Details of memory, CUDA limitations matter 

(especially with complex data structures)

RAJA::forall<EXEC_POL>(RAJA::RangeSegment(0, indices.size()), 
[=] RAJA_DEVICE(int id) {

/* … your code here … */
})

Execution policy e.g CUDA. Compile-time choice

Iteration range

C++ lambda function body



● Aim to maintain usability, readability for physicists
● Incrementally transition from original code to improve performance
● Ease debugging (c.f. templates, code generation)

ddt(n) = -bracket(phi, n)
+ 2 * DDZ(n) * rho_s
+ D_n * Delp2(n);

BOUT_FOR(i, region) {

ddt(n)[i] = -bracket(phi, n, i)
+ 2 * DDZ(n, i) * rho_s
+ D_n * Delp2(n, i);

}

Original Merged loops
Macro: OpenMP, vectorise, RAJA

Opt-in	performance	tuning



Opt-in	performance	tuning	:	checks	outside	loops
● Borrow an API idea from SYCL: Lightweight wrappers of raw buffers
● Run-time checking performed on construction (outside loop)
● Template arguments enable compile-time checks, optimisations

auto n_acc = FieldAccessor<>(n);
auto phi_acc = FieldAccessor<>(phi);
auto jpar_acc = FieldAccessor<CELL_YLOW>(Jpar);

BOUT_FOR(i, region) {

ddt(n)[i] = -bracket(phi_acc, n_acc, i)
+ 2 * DDZ(n_acc, i) * rho_s
+ D_n * Delp2(n_acc, i);

}

Run-time checks

Compile-time type checking



Performance	improvements:	RAJA

Single-Thread, CPU-only

GPU-enabled Loop

Time

Loop: 17 ms

77 ms239 ms

423 ms

376 ms

248 ms

● GPU loop speedup = 77/17 ≈ 4.5X
● Overall speedup ≈ 423/376 ≈ 1.13X

Laplacian Inversion Loop

Laplacian Inversion

Running on Lassen, LLNL

● Only one kernel launch per 
iteration, due to loop merging

● 1260 x 1256 grid for benchmarking



Ongoing	work	to	port	to	GPUs

● Merging kernels and RAJA works well
● Significant time can be spent in 

inversion of elliptic operators
● Keeping GPUs busy can be hard
● Setup costs are significant 

(note: matrix is time-dependent!)

GPU-enabled Loop
Loop: 17 ms

376 ms

248 ms
Laplacian Inversion

Test on Lassen

Solve



GPU	functionality	is	available	in	v5

● Check out the “next” (development) branch of BOUT++:

$ git clone -b next https://github.com/boutproject/BOUT-dev.git

● Manual page: https://bout-dev.readthedocs.io/en/latest/user_docs/gpu_support.html

● Examples
○ blob2d-outerloop

https://github.com/boutproject/BOUT-dev/tree/next/examples/blob2d-outerloop
○ hasegawa-wakatani-3d

https://github.com/boutproject/BOUT-dev/tree/next/examples/hasegawa-wakatani-3d
○ elm-pb-outerloop

https://github.com/boutproject/BOUT-dev/tree/next/examples/elm-pb-outerloop

https://bout-dev.readthedocs.io/en/latest/user_docs/gpu_support.html
https://github.com/boutproject/BOUT-dev/tree/next/examples/blob2d-outerloop
https://github.com/boutproject/BOUT-dev/tree/next/examples/hasegawa-wakatani-3d
https://github.com/boutproject/BOUT-dev/tree/next/examples/elm-pb-outerloop


Grid	generation	using	Hypnotoad

● Python grid generator, 
mainly written by J.Omotani

● Can generate non-orthogonal grids,
here using orthogonal grids

● Interactive GUI or automated script
● Can adjust packing of cells around separatrix 

and/or close to targets as needed

● Sequence of grids created for convergence 
and performance testing

● Python tools for interpolating between grids



X-point Snowflake

W.A.J. Vijvers et al 2014 Nucl. Fusion 54 023009

Stellarator

Y Suzuki and J Geiger 2016 Plasma Phys. Control. Fusion 58 064004 

Complex	meshing	problems	(2D	&	3D)



[8] F Hariri and M Ottaviani CPC 184 2419 (2013) 
[9] B Shanahan, P Hill and B Dudson. Journal of Physics; 

Conference Series 775, 012012 (2016)
[10] P Hill, B Shanahan and B Dudson CPC 213, 9-18 (2017)

Shifted metric (Dimits / Scott) : 1D interpolation 

FCI: 2D interpolation

An illustration of the Flux Coordinate Independent 
method for parallel derivatives [9].

FCI:	Field-line	following	+	interpolation



Gridding	of	poloidal	plane	independent	of	
magnetic	field	structure

http://bout-dev.readthedocs.io/en/latest/user_docs/zoidberg.html
Zoidberg

BSTING project
B.Shanahan, D.Bold

IPP Greifswald

http://bout-dev.readthedocs.io/en/latest/user_docs/zoidberg.html
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SD1D 

B.Dudson et al PPCF 63 055013 (2021) https://doi.org/10.1088/1361-6587/abe21d
B.Dudson, J.Leddy PPCF 59 054010 (2017) https://doi.org/10.1088/1361-6587/aa63d2
J.Leddy, et al. Comp. Phys. Comm 212,59-68 (2017) http://dx.doi.org/10.1016/j.cpc.2016.10.009
J.Leddy, B.Dudson JNM (2016) https://doi.org/10.1016/j.nme.2016.09.020

Hermes (2D) 
Hermes (3D) 

Model	development:	SOL	&	Divertor	turbulence

Key features:
‘full-f’ : Evolve profiles + fluctuations
Includes transport physics e.g. neutrals

https://doi.org/10.1088/1361-6587/abe21d
https://doi.org/10.1088/1361-6587/aa63d2
http://dx.doi.org/10.1016/j.cpc.2016.10.009
https://doi.org/10.1016/j.nme.2016.09.020


Hermes-3:	Multi-species	transport	and	turbulence	models

● Arbitrary number of species and ionisation 
states: D, T, He, Ne, …

● Full-f, flux-driven transport & turbulence 

https://hermes3.readthedocs.iohttps://github.com/bendudson/hermes-3
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https://github.com/bendudson/hermes-3


Recent	simulations	in	1-,	2- and	3D

● 1D transport of neon in deuterium SOL plasma
● Evolving each charge state and atomic species as a separate fluid

● 2D transport in DIII-D geometry
● Solve for deuterium, tritium and helium ions and atoms

● 3D turbulence and transport in LAPD
● Both isothermal, and hot electron (ionisation source). Single ion species

● 3D turbulence and transport in DIII-D & limiter plasmas
● Isothermal, single ion species to start with



System	of	equations	is	specified	in	the	input	file
● Top-level components specify the species, collective effects and modifiers

● Each species’ equations are:

[hermes]
components = (e, d+, sound_speed, vorticity,

sheath_boundary, collisions, polarisation_drift)

[e]
type = evolve_density, evolve_momentum, isothermal

[d+]
type = quasineutral, evolve_momentum, isothermal



Solving	drift-reduced	fluid	equations
Electrons

Ions

Drifts

Vorticity

𝒗!×# =
𝒃×∇𝜙
𝐵

𝜕𝜔
𝜕𝑡 = −∇ ⋅ 𝜔𝑣!×#

+∇ ⋅ 𝑛$%𝑣||$% − 𝑛'𝑣||'



3D	turbulence	in	LAPD	geometry
● Isothermal, single ion species, no neutrals
● Uniform source of particles in domain; sheath boundary at both ends
● Resolution: 64 x 16 x 64 (radial x parallel x azimuthal)

Density near axis,
middle of domain

Dudson APS-DPP 2022



We	can	run	turbulence	simulations	with	an	
arbitrary	number	of	ion	species	(e.g.	D	+	He)

Helium fraction

Radius
Electron density and helium fraction near sheath

● No code changes needed. Input file specifies species and equations
● Here showing deuterium and helium (1+) ions
● Fuelling at 50/50 ratio, enhanced helium fraction near sheaths

Dudson APS-DPP 2022



1D	multi-fluid	transport

TargetUpstream 
(midplane)

Power into D+ ions 
and electrons Log density 

scale

● Model a 1D domain, from “upstream” (no-flow) to “target” (sheath)
● D+, Ne+ … Ne+10 ions, D & Ne atoms. Only plotting highest density species.



2D	transport	in	DIII-D	geometry
● Resolution: 64 x 128 (radial x poloidal, excluding boundary)
● D+, T+ and He+ ions; D, T and He atoms (fluids)

Midplane



2D	transport	in	DIII-D	geometry
● Resolution: 64 x 128 (radial x poloidal, excluding boundary)
● D+, T+ and He+ ions; D, T and He atoms (fluids)

Outer target

Different ion 
temperatures



Flexible	tool	for	edge	simulations
Note:	under	development
● All of these simulations run the same executable

● Species, equations & reactions are configured in input file
● Geometry (1,2,3D; linear, tokamak) in input or separate mesh file

● Atomic reactions and multi-ion support:
● Hydrogen and helium atomic reactions from Amjuel
● Neon reactions from ADAS
● Tskhakaya & Kuhn multi-ion sheath boundary conditions

● Many solver / time integration options, making use of PETSc, Hypre & 
SUNDIALS

Tskhakaya, David and S. Kuhn. “Boundary conditions for the multi-ion magnetized plasma-wall transition.” JNM 337 (2005): 405-409.



Some	applications
Note:	under	development

● Tokamak edge and divertor transport & turbulence modelling
● Including neutrals, impurities and drifts
● Comparison to DIII-D data, particularly impurity injection effects on 

turbulence

● Multi-ion plasma turbulence
● Validation on LAPD (experiments proposed)
● More work on multi-ion closures probably needed

● Interested?
● Github repository : https://github.com/bendudson/hermes-3
● Manual : https://hermes3.readthedocs.io/

https://github.com/bendudson/hermes-3
https://hermes3.readthedocs.io/


Conclusions

● BOUT++ underpins a wide range of research

● Continues to develop to meet research needs, 
with contributions from a global community

Thank you to all contributors!

Welcome to the 2023 BOUT++ workshop!


