

Diagnosing Turbulence in the Tokamak Divertor

Dr Nick Walkden

Senior Consultant – Fusion

BOUT++ Workshop – 09/01/2023

Acknowledgement

UK Atomic Energy Authority

The vast majority work described within this presentation was undertaken whilst working for the UKAEA funded by EPSRC and EUROfusion – my thanks to all of my friends, collaborators, and colleagues who contributed to this work during that time

Open slide master and add classification here

Overview

What is divertor turbulence, and why is it important?

Can we *understand* divertor turbulence?

Summary

Overview

What is divertor turbulence, and why is it important?

Can we understand divertor turbulence?

Summary

A 'Cubists' view of heat transport

- Core turbulence moves heat toward csedge determining the core pressure of the core pressure of the core pressure of the core pressure of the core of
- Pedestal turbuler concerns heat towards the separatrix determining to be stal characteristics
 Equation of the separatrix determining the separatrix determini
- \rightarrow Divertor turbulence re-distributes heat in the divertor legs impacting deposition on the divertor target

Transport processes that impact the divertor:

 Cross-field transport from the core into the scrape-off layer

Outer divertor

Transport processes that impact the divertor:

- Cross-field transport from the core into the scrape-off layer
- Parallel transport towards the divertor plates

Transport processes that impact the divertor:

- Cross-field transport from the core into the scrape-off layer
- Parallel transport towards the divertor plates
- Cross-field transport from the SOL into the PFR

Divertor transport affects:

Overview of observations around the world

NSTX-U

F.Scotti et al, NF **58** (2018) 126028

Effect of the X-point

Near the X-point, fluctuations from upstream are unable to enter the divertor

Example from TCV snowflake plasmas

N.R.Walkden et al, PPCF **60** (2018) 115008

Overview

What is divertor turbulence, and why is it important?

Can we *understand* divertor turbulence?

Summary

For a first non-linear study, try to minimize the complexity to aid understanding → Simple slab representation of a single, isolated divertor leg

STEP 1: 'Mock-Divertor' slab simulations

Turbulence quickly develops in the vicinity of the separatrix

17 SYSTEMS • ENGINEERING • TECHNOLOGY

N.R.Walkden et al, NME **18** (2019) 111

FRAZER-NASH CONSULTANCY AKER COMPANY By removing different driving terms we can isolate

→ K-H turbulence responsible for driving the system

their effects

- \rightarrow Curvature effects seem
- to play a regulatory role on the turbulence

In a tokamak magnetic curvature tends to force structures in the direction of the major radius

20 \$

- → The magnetic curvature is a principle actuator to vary the spreading parameter
- → Other factors appear to have a minimal effect
- → This is due to the balance between perpendicular and parallel transport

F.Riva *et al* Plasma Phys. Control. Fusion **61** (2019) 094013

21 SYSTEMS · ENGI

1.2

Goal: Extract properties of fluctuating structures in real space from camera images

Step 1: Background subtraction to isolate fluctuations

Step 2: Project magnetic field lines onto camera image plane

Step 3: Create a basis-set of magnetic field lines

Step 4: Find least-squares inversion of camera image onto basis-set

F.Riva *et al* Plasma Phys. Control. Fusion **61** (2019) 094013

Shot	Mode	$n_{e,sep}(10^{19}m^{-3})$	$T_{e,sep}(eV)$	$I_p(MA)$	$B_{tor}(T)$	$P_{NBI}(MW)$
29606	L-mode	0.72	18	0.63	-0.59	0
29608	L-mode	0.97	17	0.63	-0.57	0
29651	L-mode	0.85	24	0.62	-0.55	1.27
29660	L-mode (RMPs)	0.94	25	0.63	-0.54	1.22
29668	L-mode	1.05	27	0.63	-0.56	0.61
29669	L-mode	1.25	19	0.42	-0.51	0.62
29693	L-mode	0.97	32	0.42	-0.48	1.23
29718	L-mode	1.00	38	0.63	-0.54	1.61
29720	L-mode	1.37	29	0.42	-0.47	1.61
29723	H-mode (ELM-free)	1.4	55	0.82	-0.56	1.6
$\ $ STORM [16]	L-mode	0.5	15	0.4	-0.4	0

Measurements are made cumulatively across the shot database

- Inner and outer leg decoupled
- Similar poloidal sizes in both legs
- Strong collapse across database indicating insensitivity to operational parameters
- Excellent agreement from simulation, though over-estimation of outer-leg mode number

Two-point correlation technique used to map flow in inner divertor leg

32 SYSTEMS • ENGINEERING • TECHNOLOGY

Two-point correlation technique used to map flow in inner divertor leg

- Broadly similar flow profiles, though some variation, particularly in poloidal flow
- Radial flow ~ 200m/s in PFR concomitant with radial decay of Jsat at inner target
- Flow measurements from simulation match data extremely well, though radial velocity drops faster and profile decays quicker

33 SYSTEMS · ENGINEERING · TECHNOLOGY

STEP 3: Diagnose the turbulence

Impressive agreement between simulation and experiment means that simulations can be used to diagnose the turbulence

Vorticity eqn in STORM:

$$\frac{\partial\Omega}{\partial t} + U\mathbf{b}\cdot\nabla\Omega = -\mathbf{b}\times\nabla\phi\cdot\nabla\Omega + \frac{1}{n}\nabla\times\left(\frac{\mathbf{b}}{B}\right)\cdot\nabla P$$

 $+\frac{1}{n}\nabla\cdot\left(\mathbf{b}J_{||}\right)+\mu_{\Omega_{0}}\nabla_{\perp}^{2}\Omega$

STEP 3: Diagnose the turbulence

Impressive agreement between simulation and experiment means that simulations can be used to diagnose the turbulence

STEP 3: Diagnose the turbulence

Impressive agreement between simulation and experiment means that simulations can be used to diagnose the turbulence

Removing these turbulence drives shows how each contributes to the total radial fluxes

36 SYSTEMS • ENGINEERING • TECHNOLOGY N.R.Walkden et al Submitted to PRL

Overview

What is divertor turbulence, and why is it important?

Can we understand divertor turbulence?

Summary

Summary

- 1. Radial transport in the divertor is a complex non-linear turbulent phenomenon
- 2. Divertor turbulence is relatively insensitive to parameters of the plasma
- 3. Turbulence in the two divertor legs differs significantly
 - On the inner divertor leg turbulence is mainly interchange
 - On the outer leg, turbulence is mainly drift-wave
- 4. The magnetic curvature plays a vital role in divertor turbulence
 - It drives transport into the PFR in the inner leg
 - It suppresses transport into the PFR in the outer leg

This is just the start, there is a lot of learning to go!

Aim: Test in impact of the magnetic curvature by varying the poloidal divertor leg angle

Aim: Test in impact of the magnetic curvature by varying the poloidal divertor leg angle

$$\alpha \approx -\arctan\left(\frac{Z_{SP} - Z_X}{R_{SP} - R_X}\right)$$

Shot	63127/28	63161/62
α (deg)	32	80

Clear change in profiles at the outer target

The horizontal leg shows

- \rightarrow Increased spreading into the PFR
- → Generally flatter profile
- \rightarrow Higher standard deviation in the PFR
- \rightarrow 50% higher fluctuation level in the PFR
- \rightarrow Peak in fluctuation level further into PFR

Treating the PFR as a closed system with no sources we can estimate a poloidally averaged radial transport flux

Treating the PFR as a closed system with no sources we can estimate a poloidally averaged radial transport flux

#63161, 1.4s l in L.in onit out 0.8 1.0

R (m)

Assume:

- Stagnation near the X-point $\rightarrow \Gamma_{||,in} = 0$
- Outer PFR sufficiently far from separatrix

$$\rightarrow \Gamma_{\perp,out} = 0$$

FRAZER-NASH

Treating the PFR as a closed system with no sources we can estimate a poloidally averaged radial transport flux

#63161, 1.4s in 0.8 1.0 R (m)

Assume:

- Stagnation near the X-point $ightarrow \Gamma_{||,in} = 0$
- Outer PFR sufficiently far from separatrix $\rightarrow \Gamma_{\perp,out} = 0$

$$2\pi \int \Gamma_{\perp} R(S_{pol}) dS_{pol} = 2\pi \int \Gamma_{||} \frac{B_{pol}(S_{tar})}{B(S_{tar})} R(S_{tar}) dS_{tar}$$

$$\langle \Gamma_{\perp} \rangle \approx \frac{\int \Gamma_{||} \frac{B_{pol}(S_{tar})}{B(S_{tar})} R(S_{tar}) dS_{tar}}{\int R(S_{pol}) dS_{pol}}$$

FRAZER-NASH

Treating the PFR as a closed system with no sources we can estimate a poloidally averaged radial transport flux

Assume:

- Stagnation near the X-point $ightarrow arGamma_{||,in} = 0$
- Outer PFR sufficiently far from separatrix $\rightarrow \Gamma_{\perp,out} = 0$

$$2\pi \int \Gamma_{\perp} R(S_{pol}) dS_{pol} = 2\pi \int \Gamma_{||} \frac{B_{pol}(S_{tar})}{B(S_{tar})} R(S_{tar}) dS_{tar}$$
$$\langle \Gamma_{\perp} \rangle \approx \frac{\int \Gamma_{||} \frac{B_{pol}(S_{tar})}{B(S_{tar})} R(S_{tar}) dS_{tar}}{\int \Gamma_{||} \frac{B_{pol}(S_{tar})}{B(S_{tar})} R(S_{tar}) dS_{tar}}$$

 $\int R(S_{pol}) dS_{pol}$

FRAZER-NASH

Treating the PFR as a closed system with no sources we can estimate a poloidally averaged radial transport flux

Assume:

- Stagnation near the X-point $ightarrow arGamma_{||,in} = \mathbf{0}$
- Outer PFR sufficiently far from separatrix $\rightarrow \Gamma_{\perp,out} = 0$
- Density profile can be inferred from Jsat profile scaled by peak target density
- Transport can be expressed as a diffusion or convection

$$\langle D_{\perp} \rangle \approx \frac{\int \Gamma_{||} \frac{B_{pol}(S_{tar})}{B(S_{tar})} R(S_{tar}) dS_{tar}}{\frac{\partial n}{\partial \psi} \int B_{pol}^{-1}(S_{pol}) dS_{pol}}$$

FRAZER-NASH

Treating the PFR as a closed system with no sources we can estimate a poloidally averaged radial transport flux

Assume:

- Stagnation near the X-point $ightarrow arGamma_{||,in} = 0$
- Outer PFR sufficiently far from separatrix $\rightarrow \Gamma_{\perp,out} = 0$
- Density profile can be inferred from Jsat profile scaled by peak target density
- Transport can be expressed as a diffusion or convection

$$\langle D_{\perp} \rangle \approx \frac{\int \Gamma_{||} \frac{B_{pol}(S_{tar})}{B(S_{tar})} R(S_{tar}) dS_{tar}}{\frac{\partial n}{\partial \psi} \int B_{pol}^{-1}(S_{pol}) dS_{pol}}$$

Treating the PFR as a closed system with no sources we can estimate a poloidally averaged radial transport flux

Assume:

- Stagnation near the X-point $ightarrow arGamma_{||,in} = 0$
- Outer PFR sufficiently far from separatrix $\rightarrow \Gamma_{\perp,out} = 0$
- Density profile can be inferred from Jsat profile scaled by peak target density
- Transport can be expressed as a diffusion or convection

$$\langle v_{\perp} \rangle \approx \frac{\langle \Gamma_{\perp} \rangle}{n_{sep}}$$

FRAZER-NASH

Treating the PFR as a closed system with no sources we can estimate a poloidally averaged radial transport flux

Assume:

Stagnation near the X-point $ightarrow arGamma_{||,in} = 0$

- Outer PFR sufficiently far from separatrix $\rightarrow \Gamma_{\perp,out} = 0$
- Density profile can be inferred from Jsat profile scaled by peak target density
- Transport can be expressed as a diffusion or convection

$$\langle v_{\perp} \rangle \approx \frac{\langle \Gamma_{\perp} \rangle}{n_{sep}}$$