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This paper reports on the theoretical and simulation results of a gyro-Landau-fluid extension of the

BOUTþþ code, which contributes to increasing the physics understanding of edge-localized-modes

(ELMs). Large ELMs with low-to-intermediate-n peeling-ballooning (P-B) modes are significantly

suppressed due to finite Larmor radius (FLR) effects when the ion temperature increases. For type-I

ELMs, it is found from linear simulations that retaining complete first order FLR corrections as

resulting from the incomplete “gyroviscous cancellation” in Braginskii’s two-fluid model is

necessary to obtain good agreement with gyro-fluid results for high ion temperature cases

(Ti � 3 keV) when the ion density has a strong radial variation, which goes beyond the simple local

model of ion diamagnetic stabilization of ideal ballooning modes. The maximum growth rate is

inversely proportional to Ti because the FLR effect is proportional to Ti. The FLR effect is also

proportional to toroidal mode number n, so for high n cases, the P-B mode is stabilized by FLR

effects. Nonlinear gyro-fluid simulations show results that are similar to those from the two-fluid

model, namely that the P-B modes trigger magnetic reconnection, which drives the collapse of the

pedestal pressure. Due to the additional FLR-corrected nonlinear E � B convection of the ion gyro-

center density, for a ballooning-dominated equilibrium the gyro-fluid model further limits the radial

spreading of ELMs. In six-field two fluid simulations, the parallel thermal diffusivity is found to

prevent the ELM encroachment further into core plasmas and therefore leads to steady state L-mode

profiles. The simulation results show that most energy is lost via ion channel during an ELM event,

followed by particle loss and electron energy loss. Because edge plasmas have significant spatial

inhomogeneities and complicated boundary conditions, we have developed a fast non-Fourier

method for the computation of Landau-fluid closure terms based on an accurate and tunable

approximation. The accuracy and the fast computational scaling of the method have been

demonstrated. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4801746]

I. INTRODUCTION

This paper reports on the theoretical and simulation

results of a Gyro-Landau-fluid (GLF) extension of the

BOUTþþ code1 which contributes to increasing the physics

understanding of edge-localized-modes (ELMs). The large

ELMs with low-to-intermediate-n peeling-ballooning (P-B)

modes are significantly suppressed due to finite Larmor ra-

dius (FLR) effects when the ion temperature increases.

Meanwhile, advanced GLF models with closure of high

moments are necessary to simulate small ELMs with high-n

drift/resistive ballooning modes and to obtain self-consistent

turbulence and transport between ELMs for the pedestal

plasma profiles rebuild.

An isothermal truncation of the general electromagnetic

gyro-fluid model of Snyder and Hammett2 is developed for

ELM simulations. The ion gyrocenter density and electron

density are combined to yield a gyro-kinetic vorticity density

equation. The set of nonlinear electromagnetic gyro-fluid

equations consists of gyro-kinetic vorticity density, ion gyro-

center density, the generalized Ohms law, and Ampere’s

law. The simple set of gyro-fluid equations correctly

describes a range of plasma instabilities relevant to edge

plasmas, such as low-to-intermediate-n peeling-ballooning

modes and high-n drift-ballooning modes. The first-order

Pad�e’s approximation to C0ðbÞ ¼ 1=ð1þ bÞ is used to get

the potential by inverting the gyrokinetic vorticity density in

configuration space. In the limit of small ion gyro-radius

length, b ¼ k2
?q

2
i � 1 (to first order finite Larmor radius

approximation in b), this set of equations is shown to be the

same as the two-fluid model that includes FLR effects. We

demonstrate that the complicated nonlinear gyro-viscous ten-

sor in the two-fluid model naturally appears in the isothermal

gyro-fluid model as the FLR-corrected E � B convection for

the ion gyro-center density in the gyro-kinetic vorticity

a)Paper TI3 2, Bull. Am. Phys. Soc. 57, 294 (2012).
b)Invited speaker.
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density equation and the FLR-corrected gyro-kinetic vortic-

ity density. This offers a simple, yet adequate description of

ion dynamics that is relatively easy to implement in nonlin-

ear simulation codes. We also show that the gyro-kinetic

vorticity density is the charge density only in the cold-ion

limit.

Because edge plasmas have significant spatial inhomoge-

neities and complicated boundary conditions, it is desirable to

compute the closure terms in configuration space. The nonlo-

cality of Landau-fluid operators can make the naive direct

computations of the closure terms in configuration space via

convolution or matrix multiplication very expensive. We have

therefore developed a fast non-Fourier method for the compu-

tation of Landau-fluid closure terms based on an accurate and

tunable approximation that can be numerically implemented

through the solution of matrix equations in which the matrices

are tridiagonal or narrowly banded. The accuracy, for the op-

erator itself and for the resulting plasma response function and

the fast computational scaling of the method have been dem-

onstrated. A spectral collocation analysis has been developed

that greatly aids in the optimization of the approximations for

accuracy and computational cost, both for cases that are colli-

sionless and for cases where collisional and collisionless

damping processes compete.

As gyro-fluid code development proceeds, we also build

the multi-field two-fluid codes in parallel to investigate

additional important physics missing in the basic 3-field iso-

thermal gyro-fluid model and to guide the multi-moment

gyro-fluid extension that increases in accuracy to the kinetic

equation. As it is well known that parallel Landau damping

is important to microturbulence, we find that the parallel

thermal diffusivities are large on the top of pedestal plasmas,

which prevent the further encroachment of ELM perturba-

tion into core plasmas and therefore leads to steady state

L-mode profiles. This motivates us to develop a nonlocal

parallel Gyro-Landau-fluid thermal transport model valid in

all collisionality regimes.

The organization of this paper is as follows. The basic

set of equations and isothermal simulation model are given

in Sec. II. The 3-field and 6-field nonlinear simulations of

peeling-ballooning modes are discussed in Sec. III. A new

non-Fourier Method for applying the Landau-fluid operators

is given in Sec. IV. Summary and discussion are given in

Sec. V.

II. AN ISOTHERMAL ELECTROMAGNETIC 3-FIELD
GYRO-FLUID MODEL

To begin, we are interested in a simple 3-field gyro-fluid

model that describes the finite Larmor radius (FLR) effects

on early phase of ELM dynamics. In order to avoid compli-

cations associated with the sound wave, ion parallel motion,

ion and electron Landau damping, and the interaction of

kinetic Alfv�en waves with drift waves, we assume that

kjjvti � x�i and be � 1, where vti is the ion thermal velocity,

x�i is the ion drift frequency, and be is the ratio of the elec-

tron kinetic pressure to the magnetic pressures. The validity

of the reduced model will be discussed in Sec. III B. The iso-

thermal 3-field gyro-fluid model can be obtained from

Snyder-Hammett model2 by (1) assuming constant tempera-

tures for both the ions and electrons; (2) discarding all but

the lowest-order moment for the ions and the lowest two par-

allel moments for the electrons; (3) ignoring compressibility

of E � B drift flow; (4) adding the cross term r?ln ni

�r½ðC0 � C1Þ e/
T0
� in the gyro-kinetic Poisson equation which

is important for pedestal plasmas with large density gradi-

ent;3 and (5) adding the current diffusion term with hyper-

resistivity gH in the generalized Ohm’s law for magnetic

reconnection in high-Lundquist number pedestal plasmas4

@niG

@t
þ vEG � rniG ¼ �

2

eB

� �
b0 � j � rpiG; (1)

@ne

@t
þ vE � rne ¼

2

eB

� �
b0 � j � rpe �rjjðnevjjeÞ; (2)

@Ajj
@t
¼ �@jj/þ

1

nee
@jjpe þ

g
l0

r2
?Ajj �

gH

l0

r4
?Ajj; (3)

Jjj ¼ �
1

l0

r2
?Ajj ¼ �neevjje; (4)

ne ¼ �ni � ni½1� C0ðbÞ�
Zie/
T0

þ niq
2
i ðr?lnniÞ � r? ðC0 � C1Þ

Zie/
T0

� �� �
; (5)

�ni ¼ C0ðbÞ1=2niG; b ¼ �q2
ir2
?; (6)

where �ni is the gyro-phase independent part of the real space

ion density. The notation niG is the ion gyro-center density

and ni is the particle density (equal to ne in the limit of small

Debye length, kkD � 1). For the various definitions of den-

sity, the relation between the particle and gyro-center repre-

sentations is given by the gyro-kinetic Poisson equation,

Eq. (5). Definitions of various quantities associated with

plasma physics are as follows:

vEG ¼ b0 �r?UG=B; vE ¼ b0 �r?/=B;

~B ¼ rAjj � b0: (7)

The notation UG ¼ �U ¼ C1=2ðbÞ/ has been introduced for

gyro-averaged electric potential. Here, rjjF ¼ B@jjðF=BÞ for

any F, @jj ¼ @0
jj þ ~b � r; ~b ¼ ~B=B; @0

jj ¼ b0 � r;j¼ b0 � rb0,

g is resistivity and gH hyper-resistivity, which is equivalent

to the electron viscosity le? ¼ ðnee2=meÞgH .5 The symbol

tilde represents the fluctuation quantities.

Since in the long wavelength regime of a quasi-neutral

plasma �ni and ne are two large numbers and are almost equal

�ni � ne and Eq. (5) can be rewritten as 1� �ni=ne ’ ðk?qiÞ2
e/=Te, where ðk?qiÞ2 � 1 and e/=Te � 1, the desired solu-

tion of Poisson equation as written depends on the difference of

two large and almost equal numbers. Therefore, it is difficult to

accurately obtain numerical solutions when niG and ne evolve

separately because the numerical errors in ð�niðx; tÞ � neðx; tÞÞ
may be on the same order as the ion polarization density.

Here, we propose an alternative formulation. We define two

new variables: gyrokinetic vorticity density -G ¼ eBðne � niGÞ
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and gyrokinetic total pressure pG ¼ piG þ pe ¼ niGTiG

þ neTe ¼ ðniG þ neÞT0, assuming electron temperature Te

being equal to ion temperature TiG, Te ¼ TiG ¼ T0. For the

isothermal model, which neglects all considerations of tem-

perature dynamics, we can rewrite the gyrokinetic vorticity

density as

@-G

@t
þ vE � r-G � eBðvEG � vEÞ � rniG

¼ 2b0 � j � rpG þ Brjjjjj; (8)

@pG

@t
þ vE � rpG þ T0ðvEG � vEÞ � rniG ¼ 0; (9)

-G ¼ eB C1=2
0 ðbÞniG � niG � ni½1� C0ðbÞ�

Zie/
T0

� �� �

þ nieBq2
ir?lnni � r? ðC0 � C1Þ

Zie/
T0

� �� �
; (10)

ne ¼
1

2

pG

T0

þ -G

eB

� �
; niG ¼

1

2

pG

T0

� -G

eB

� �
; pe ¼ neT0:

(11)

Here, the parallel current term and the diamagnetic flow

when Ti 6¼ Te have been neglected in pressure equation. The

collisional stress tensors and other higher order off-diagonal

terms of the viscosity tensor can easily be included in con-

nection to fluid descriptions. The equations for Ajj and Jjj are

the same as in Eqs. (3) and (4). This formulation naturally

couples different parallel/poloidal domains (core, the scrape-

off-layer and the private flux region) together in the edge

region through radial advection and gyroaverage. In princi-

ple, the vorticity formulation contains the same information

as gyro-fluid Eqs. (1) and (2) because it is derived from

them. Besides the numerical reason as discussed above, the

vorticity Eq. (8) has the advantage of relative easily being

generalized to a general vorticity equation with accurate

physics for long wavelength and transport time scale phe-

nomena like the self-consistent calculation of the radial elec-

tric field,6 but this will be the subject of a future publication.

Instead, in this study, we employ ion equilibrium with sub-

sonic flow velocity vi, which will be characterized by the

force balance relation as discussed in Sec. II B.

A. Gyro-fluid vorticity density equation in the limit of
small ion gyro-radius length

In the long-wavelength limit, where ðk?qiÞ2 � 1, C0ðbÞ
¼ 1=ð1þ bÞ ’ 1� b;C1=2

0 ðbÞ ¼ 1=ð1þ b=2Þ ’ 1� b=2; C0

�C1’ð1�b=2Þ=ð1þbÞ’1�3b=2;UG�/¼ð1=2Þq2
ir2
?/.

The 3-field gyro-fluid model in the limit of small ion gyro-

radius length becomes

@-G

@t
þ vE � r-G �

eB

2T0

q2
i

b0 �r?ðr2
?/Þ

B

� �
� rpiG

¼ 2b0 � j � rpG þ Brjjjjj; (12)

@pG

@t
þ vE � rpG þ

1

2
q2

i

b0 �r?ðr2
?/Þ

B

� �
� rpiG ¼ 0; (13)

-G ¼
eB

T0

q2
i niZier2

?/þ niZier? ln ni � r?/þ 1

2
r2
?piG

� �
:

(14)

The equations for Ajj, Jjj, ne, niG, and pe are the same as Eqs.

(3), (4), and (11), respectively. By defining the two-fluid vor-

ticity density - ¼ xci½-G þ ðeB=2T0Þq2
ir2
?piG�, this equa-

tion can be rewritten into the form which is the same as two-

fluid version of vorticity equation (2) given by Xu et al.,7

excluding external momentum sources and collisional ion

viscosity, which is given here again for comparison and will

be later referred as two-fluid model in simulation sections

@-
@t
þ ðvE þ vjjib0Þ � r- ¼ ð2xciÞb0 � j � rp

þ niZie
4pv2

A

c2
rjjjjj �

1

2
fniZievpi � rðr2

?/Þ

þ vE � rðr2
?piÞ � r2

?½vE � rðpiÞ�g: (15)

It should be noted, however, that Eq. (15) is written in

CGS units as the original paper,7 while SI units are used in

this paper. This resolves the long-standing issue regarding

the difference in vorticity equation derived from two-fluid

and gyrokinetic framework. The gyro-viscous terms emerge

naturally from the FLR nonlinearities in the ion gyrocenter

density in the limit of small ion gyro-radius length.

Furthermore, the gyro-fluid equations show a simple physics

picture and can be easily implemented in simulation codes.

The one-half of ion diamagnetic drift vorticity in -G [the

last term on the right-hand-side of Eq. (14)] indicates that

the gyro-kinetic vorticity density -G is the charge density

only in the cold-ion limit.

B. Gyro-fluid equilibrium and axisymmetric
component of fluctuations

Ion equilibrium with subsonic flow velocity, vi, can be

characterized by the force balance relation niZierUþrPi

¼ Zienivi � B. The parallel two-fluid vorticity (or simply

two-fluid vorticity) - ¼ xcib � r � ðnimiviÞ therefore can be

written as - ¼ niZier2
?Uþ niZier?lnni � r?Uþr2

?Pi.

For a typical ion equilibrium with subsonic ion flow velocity

and with weak ion temperature gradient in H-mode pedestal

plasmas, the E � B drift is balanced with ion diamagnetic

drift, the equilibrium vorticity is almost zero, -0 ’ 0, which

yields the isothermal relation ZieU0 ’ T0ln Pi0.

Therefore, to lowest order of the poloidal ion gyroradius to

the ion temperature scale (qpi=LTi � 1), subsonic ion flow

implies that the pedestal is maintained by a large electron cur-

rent with the ions electrostatically confined. Since the two-fluid

vorticity is different from gyro-fluid vorticity by one-half of ion

diamagnetic drift vorticity, typical subsonic ion flow force bal-

ance means a non-zero gyro-fluid equilibrium vorticity

-G0 ¼ �
eB

2T0

� �
q2

ir2
?Pi0: (16)

Similarly for the isothermal model, if we assume that the

turbulence-generated steady-state axisymmetric component
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of ion flow is subsonic (hvi?if � vTi), the same isothermal

relation holds for gyro-fluid model as well ZieU ’ T0 ln

ðPi0 þ hpiifÞ. Here, hpiif means the axisymmetric component

of ion pressure fluctuations, i.e., n¼ 0 component. The same

is true for the turbulence-generated axisymmetric component

of gyro-fluid vorticity

h-if ¼ 0 ) h-Gif ¼ �
eB

2T0

� �
q2

ir2
?hpiGif: (17)

In other words, we assume that the ion response is adiabatic

for both equilibrium and steady-state axisymmetric compo-

nent of fluctuations.

III. SIMULATIONS OF EDGE-LOCALIZED-MODES

To study the physics of nonlinear P-B mode dynamics,

we choose circular cross-section toroidal equilibria with an as-

pect ratio of 2.9 generated by the TOQ equilibrium code. The

plasma equilibrium is far above the marginal P-B instability

threshold with a pedestal toroidal pressure bt0 ¼ 1:941

�10�2 and a normalized pedestal width Lped=a ¼ 0:0486.8

This is a simple circular equilibrium which has been designed

for use in code verification and physics exploration. It is not

meant to represent a particular experimental case, but rather is

an example case with a strongly unstable pedestal in simple

geometry. This equilibrium has been used in previous code

verification exercises, and it is described in detail in Ref. 8. It

is worth noting that in experimental reconstructions, both the

bootstrap current as well as the Ohmic (and usually insignifi-

cant driven) current are included. The bootstrap current is gen-

erally the largest component, and so for simple test equilibria

such as this one, one can use a bootstrap current profile to get

a typically shaped current profile across the edge region.

In this section, a series of gyro-fluid and two-fluid simula-

tions are conducted to investigate the scaling characteristics of

the ELMs as a function of ion temperature and density.

During the scan the pressure profile and the magnetic equilib-

rium are kept the same. Therefore the bootstrap current is kept

the same as the base case (Tbase ¼ 3 keV). Because BOUTþþ
code reads the bootstrap current from the equilibrium file,

which is generated by the TOQ equilibrium code, other equi-

librium files are not currently available. Nevertheless, since

the bootstrap current drive is small for the base case, we label

it as a ballooning-dominated equilibrium. It is anticipated that

the impact of the bootstrap current on the scan is small as

well, or at least for cases T0 ¼ Ti0 ¼ Te0 < Tbase ¼ 3 keV

where bootstrap current becomes even smaller.

In this study, both equilibrium flow and turbulent zonal

flow have been set to be zero for both two-fluid and gyro-

fluid models in BOUTþþ code: V0 ¼ VE0 þ VrPi
¼ 0 and

hdvif ¼ hvEif þ hvrPi
if ¼ 0. Therefore, the equilibrium

electric field is Er0 ¼ ð1=n0ZieÞrrPi0 with ion pressure

Pi0 ¼ P0=2, and the perturbed electric field is hErif
¼ ð1=n0ZieÞrrhPiif. The zonal magnetic field is also set to

be zero as it is negligibly small compared to the equilibrium

magnetic field B0. The influence of equilibrium shear flow

on peeling-ballooning instabilities and edge localized mode

crashes can be found in a previous publication.10

Radial boundary conditions used are -G ¼ 0; @pG=
@w ¼ 0 for gyro-fluid and - ¼ 0; @p=@w ¼ 0 for two-fluid,

r2
?Ajj ¼0, and @/=@w¼0 on inner radial boundary; -G¼0;

pG¼0 for gyro-fluid and -¼0; p¼0 for two-fluid,

r2
?Ajj ¼0, and /¼0 on outer radial boundary. The domain

is periodic in parallel coordinate y (with a twist-shift condi-

tion) and periodic in binormal coordinate z. For efficiency,

when performing nonlinear simulations, only 1/5th of the

torus is simulated. The number of grid cells in each coordi-

nate are nw¼512;ny¼64, and nz¼32.

From the given magnetic geometry and plasma profiles

with edge pedestal structures, the simulation is initialized

with a small n¼ 15 vorticity perturbation with Gaussian

shape in radial and poloidal direction. The fastest growing

mode dominates the initial phase of the calculation, in which

the perturbation grows at an approximately exponential rate

due to the P-B modes. After this initial linear phase, the per-

turbation evolves to a nonlinear saturated state, a pedestal

collapsing phase, and a new sustained turbulent state without

edge pedestal structures.

A. ELM 3-field gyro-fluid simulations

Utilizing a Pad�e approximation for the modified Bessel

functions, this set of equations (3), and (8) and (9) with the

auxiliary equations (4), (10) and (11), (16) and (17) is imple-

mented in the BOUTþþ framework with full ion FLR effects,

except that C0 � C1 ’ 1 is used in the last term of Eq.(10) for

ELM simulations, where we assume k?Ln 	 1. This simple

isothermal 3-field gyro-fluid model does not yet include

Landau damping for peeling-ballooning (P-B) modes with

x � x�i 	 xti, where x�i is the ion diamagnetic drift fre-

quency and xti ¼ vti=qR is the thermal ion transit frequency.

In this section, the resistivity g, hyper-resistivity, gH,

and edge temperature T0 are treated as constants in space-

time across simulation domain.

1. Linear 3-field gyro-fluid simulations

The initial simulation results are shown to be consistent

with the previous two-fluid model including only the ion dia-

magnetic drift for constant density profile. Retaining the

complete first-order FLR corrections (including all three

terms on the second line of Eq. (15)) is necessary to obtain

good agreement with gyro-fluid results for high ion tempera-

ture cases (Ti � 3 keV) when the ion density has a strong ra-

dial variation. The influence of gyro-radius effects on the

linear growth rate of P-B modes vs. n (top) and khqi (bottom,

calculated with Ti¼ 1 kev) is summarized in Fig. 1 for type-I

ELMs. Good agreement in the linear growth rate is shown in

long-wavelength limit among the ideal MHD model (black),

two-fluid model (solid), and gyro-fluid model (dash). In both

cases, the maximum growth rate is inversely proportional

to Ti because the FLR effect is proportional to Ti. The

FLR effect plays the role of a threshold in the growth rate.

Only the perturbations with a growth rate higher than the

threshold become unstable. Therefore, as the ion temperature

increases, the FLR and the stabilizing effect increase. The

FLR effect is also proportional to toroidal mode number n,
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so for high n cases, the peeling-ballooning mode is stabilized

by FLR effects.

2. Nonlinear 3-field gyro-fluid simulations

Nonlinear gyro-fluid simulations show results that are

similar to those from the two-fluid model, namely that the

P-B modes trigger magnetic reconnection, which drives the

collapse of the pedestal pressure.4,9 Hyper-resistivity is

found to limit the radial spreading of ELMs by facilitating

magnetic reconnection. However, as shown in Fig. 2, varia-

tion by three orders of magnitude in hyper-resistivity leads

to variation of less than a factor of two in ELM size. The

ELM size is found to be weakly sensitive to the hyper-

resistivity for large ELMs. For a fixed hyper-resistivity

SH ¼ 1012, when S > Sc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SHxA=c

p
> 106, which is rele-

vant to today’s modestly sized tokamaks and ITER, our

previous simulations find that the ELM size is insensitive to

the resistivity.9 Due to the additional FLR-corrected nonlinear

E � B convection for the ion gyro-center density, the gyro-

fluid model further limits the radial spreading of ELMs as

shown in Fig. 2, and for a ballooning-dominated equilibrium

the FLR effect can significantly decrease the ELM size when

the pedestal ion temperature increases from 1 keV to 4 keV

because high-n modes are stabilized. Here the Lundquist

number S ¼ l0RvA=g ¼ 108, the hyper-Lundquist number

SH ¼ l0R3vA=gH, vA is the Alfv�en velocity, and R is the major

radius. The ELM size is defined as DELM ¼ DWPED=
WPED ¼

Ð Rout

Rin

Þ
dRdhðP0 � hPifÞ=

Ð Rout

Rin

Þ
dRdhP0, the ratio of

the ELM energy loss (DWPED) to the pedestal stored energy

Wped. Here, P is the pedestal pressure and the symbol hif
means the average over bi-normal periodic coordinate. The

lower integral limit is the pedestal inner radial boundary Rin,

while the upper limit is the radial position of the peak pressure

gradient Rout.

B. Nonlinear 6-field two-fluid simulations

In Sec. III A, we presented 3-field isothermal gyro-fluid

and two-fluid models to simulate ELM dynamics, which

include the fundamental physics: (1) peeling-ballooning

instability; (2) ion diamagnetic stabilization of high-n bal-

looning modes; and (3) resistivity and hyper-resistivity for

magnetic reconnection and ELM crashes. The question natu-

rally arises how the additional physics affects the basic ELM

models. Therefore, we have extended the basic 3-field model

to sophisticated multi-field models: (1) four-field model11

with vorticity -, total pressure P, parallel vector potential

Ajj, and ion parallel velocity Vjj, which include sound waves;

(2) five-field model12,13 with vorticity -, density n, ion and

electron temperature Ti;e, and parallel vector potential Ajj,
which include parallel thermal diffusivities; and (3) six-field

model14 based on Braginskii equations in drift ordering with

vorticity -, density n, ion and electron temperature Ti;e, par-

allel vector potential Ajj, and ion parallel velocity Vjj.
In these five-field and six-field models, nonlinear paral-

lel thermal diffusivities and nonlinear resistivity are used.

Due to the strong spatial variation of the plasma density

and temperature profiles in the edge pedestal across the sepa-

ratrix, we use the following flux-limited expression for paral-

lel thermal diffusivity in a harmonic average form:15 vef f
jjj

¼ ð1=vSH
jjj þ 1=vFS

jjj Þ
�1; j ¼ e; i:, where vSH

jje ¼ 3:2v2
th;e=�e; vSH

jji
¼ 3:9v2

th;i=�i, and vFS
jjj ’ ajvth;jq95R0. Under collisional condi-

tions, the Spitzer-Harm expressions vSH
jjj clearly apply. In the

opposite collisionless or long mean free path limit, the heat

flux saturates at the one-way free-streaming value vFS
jjj , where

aj is the flux-limiting coefficient, i.e., the ratio between free-

streaming and actual heat fluxes in the collisionless limit. A

number of studies using kinetic simulations have produced

widely disparate values for aj, ranging from 0.03 to 3.16

Here, we assume aj ¼ 1. Clearly the accuracy of such a flux-

limiting coefficient is not high although better nonlocal

Gyro-Landau-fluid models are under development by

extending the Landau-fluid operator to collisional regime

FIG. 1. The influence of the FLR physics on the linear growth rate of P-B

modes versus toroidal mode number n (top) or poloidal wavelength normal-

ized to ion Larmor radius khqi (bottom), calculated with T0 ¼ 1 keV for the

ideal MHD P–B mode (black), with two-fluid retaining the complete first-

order FLR corrections (solid), and with gyro-fluid full FLR effects (dash) for

different plasma temperature Ti. The growth rates are normalized to the

Alfv�en frequency xA, where xA ¼ vA=R0 and vA is the Alfv�en velocity and

R0 is the major radius.

FIG. 2. ELM size vs ion temperature Ti and hyper-resistivity gH for constant

density case. Lundquist number S ¼ l0R0vA=g ¼ 108 and hyper-Lundquist

number SH ¼ l0R3vA=gH . The plasma current drive and magnetic equilib-

rium are fixed during the scan.

056113-5 Xu et al. Phys. Plasmas 20, 056113 (2013)



using the fast non-Fourier approach as discussed in Sec. IV.

From 5-field and 6-field simulations, we typically find that

the parallel thermal diffusivities are large on the top of ped-

estal, as in shown Fig. 3, which prevent the further encroach-

ment of ELM perturbation into core plasmas and, therefore,

leads to steady state L-mode profiles, as indicated by the ra-

dial profiles of parallel thermal diffusivity after an ELM

crashes (solid curve, /
ffiffiffiffiffiffiffiffiffiffi
hTeif

q
).

In 6-field model, the equilibrium pressure profile P0 is

separated into ion density ni0, ion and electron temperature,

Ti0 and Te0. For a given pressure, we partition it between den-

sity and temperature, select representative density profiles ni0

using the following analytical formula, and then back out the

temperature using the relation Ti0 ¼ Te0 ¼ P0=ð2ni0Þ:

ni0ðxÞ ¼
ðnheight � npedÞ

2
1� tanh

x� xped

Dxped

� �� �
þ nave � nped:

(18)

Here, nped is the ion number density on the top of the pedes-

tal region, nave is the ratio to control the bottom amplitude of

ni0 outside the separatrix, and nheight is the coefficient to

specify the gradient of ni0. The variables xped and Dxped rep-

resent the position of peak gradient and the width of pedestal

region of P0, respectively. The location of the separatrix is

the normalized poloidal flux wn ¼ 1:0. The density profile

ni0 is set to be a constant value outside the separatrix. The

simulation results in the Table I are obtained for equilibrium

profiles using the parameters nheight ¼ 0:55 and nave ¼ 0:2,

so Te0 ¼ 1:2 keV at the inner boundary and Te0 ¼ 48 eV in

the scrape-off layer plasmas. For 3-field model, we use

the ideal running option plus diamagnetic drift, normalized

resistivity with Lundquist number S ¼ 108, additional gyro-

viscous terms defined in the second line of Eq. (15), and the

same density profile ni0. For 6-field, the full Braginskii’s

two-fluid model is used as defined in Ref. 14 with Spizer-

Harm resistivity profile.

With all additional physics added, such as ion acoustic

waves, parallel thermal diffusivities, Hall effect, toroidal

compressibility, and electron-ion friction, for the same

plasma equilibrium as described in the beginning of

Sec. III A, we find that the change of the linear growth rate

for most unstable modes is less than 20% in comparison with

the results of the basic 3-field two-fluid model although the

6-field model shifts the instability threshold from n¼ 3 of

3-field model to n¼ 4 of 6-field model for low-n modes and

shifts stable threshold from n¼ 100 of 3-field to n¼ 80 of

6-field model for high-n modes, as shown in Table I. Here,

the differences of linear growth rates for different mode

number n between these two models are listed. The ELM

size at the saturation phase is also listed in this table and the

difference of two models is 1.4%.

Therefore, the 3-field two-fluid model is good enough

to qualitatively understand the ELM thresholds due to P-B

modes and quickly simulate early phase of ELM crashes

with strongly unstable pedestals. However, ELM dynamics

is a multi-scale problem, ranging from meso-scale MHD

events to micro-scale turbulent dissipation due to electron

gyro-radius effects. In order to simulate a ELM cycle and

perform experimental validations, sophisticated multi-field

models are necessary to obtain (1) ELM power loss via sepa-

rate ion and electron channels; (2) ELM power depositions on

plasma facing components (PFCs); and (3) self-consistent tur-

bulence and transport between ELMs for the pedestal profiles

rebuild. From six-field simulations, we find that most energy

is lost via ion channel during an ELM event, followed by

particle loss and electron energy loss, as shown in Fig. 4.

Furthermore, Fig. 4(b) show results of density scan for a fixed

pressure profile with a ballooning-dominated equilibrium:

higher density leads to large ELM size during an ELM event

because of reduced ion diamagnetic stabilization and parallel

thermal conduction from lower temperature.

For a fixed pressure profile, when density n increases

and temperature (Te; Ti) decrease, thermal diffusivities ðvef f
jji;eÞ

and parallel damping decrease as well. Therefore, the pedes-

tal profiles collapse further into core plasmas, which lead to

FIG. 3. Radial profiles of electron parallel thermal diffusivity for different

separatrix density at the beginning of the simulation (t¼ 0, dashed curve)

and after the ELM crash (solid curve). Here q95¼ 5 is used to calculate the

free streaming value.

TABLE I. Linear growth rate c vs toroidal mode number n and poloidal wavelength normalized to ion Larmor radius khqi (calculated with Ti ¼ 600 eV at

peak gradient position), ELM size, and their differences between the fundamental 3-field and 6-field Braginskii’s two-fluid model. The growth rates are nor-

malized to the Alfv�en frequency xA, where xA ¼ vA=R0 and vA is the Alfv�en velocity and R0 is the major radius.

N 3 4 10 15 30 45 60 80 100 ELM size %

khqi 0.015 0.020 0.051 0.076 0.152 0.228 0.304 0.405 0.506 …

c3�field=xA 0.044 0.106 0.263 0.336 0.401 0.358 0.222 0.061 0 14.8

c6�field=xA 0 0.032 0.211 0.287 0.361 0.313 0.190 0 0 14.6

Difference % … … 19.8 12.6 10.0 12.6 14.4 … … 1.4
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larger ELM size. However, the opposite trend of the elm size

vs density or temperature is observed in experiments.17,18

We provide some cautions and two caveats on comparing

simulation results with these experimental observations for

the density or temperature scan. (1) The simulation results

are valid for a ballooning-dominated equilibrium with a fixed

bootstrap current; while experimental scan involves transi-

tions from ballooning-dominated to peeling-dominated equi-

librium and vice versa, the change of bootstrap current with

collisionality during the scan leads to changes of the mag-

netic equilibrium. (2) During the simulation scan, the pres-

sure profile and pedestal stored energy are fixed, while

during a experimental scan, higher temperature typically

means higher pedestal stored energy, which leads to more

ELM energy loss. Finally, it is worth noting that for the

range of temperature (density) variation scanned in simula-

tions, pedestal plasma is still in the weakly collisional limit;

therefore, as pedestal temperature decreases, the decreasing

of thermal diffusivity ðvef f
jji;eÞ is mainly from the free-

streaming contribution vFS
jjj , as shown in Fig. 3.

IV. A NEW NON-FOURIER METHOD FOR APPLYING
THE LANDAU-FLUID OPERATORS

Tokamak edge plasma regimes both necessitate the

implementation of Landau-fluid (LF) operators19,20 in edge-

plasma fluid codes, such as BOUTþþ, and also present new

challenges to existing approaches for doing so. On the one

hand, kinetic effects are important. However, significant spa-

tial inhomogeneities and complicated boundary conditions

are also present, which pose significant difficulties for the

standard Fourier implementations.

We have, therefore, developed a “fast” configuration-

space-based, non-Fourier, approach for the application of

these operators, which has Fourier-like computational scal-

ing. This approach is based on an approximation of 1=jkj by

a sum of Lorentzians

1

jkj 
 b
XN�1

n¼0

ank0nn

k2 þ ðank0Þ2
: (19)

Suitable choices of constants a; b; nn; k0, and N allow for a

very good fit in Fourier space of the sum to 1=jkj over a wide

range of the wavenumber k. A detailed method and imple-

mentation description has been presented21 and will be given

in a future publication.

The key feature of the approximation in Eq. (19) is that

the Lorentzians can be interpreted as real-space Helmholtz-

equation solutions, which can be numerically implemented

using highly efficient linear solvers. The jkjjj Landau-fluid

closure has been implemented with the existing solvers in

BOUTþþ, and implementation of the toroidal jxdj closure20

is underway using slightly modified versions of the perpen-

dicular solvers available in BOUTþþ.

A theory and a constructive procedure for optimizing

approximations of the kind in Eq. (19) based on spectral

colocation has been developed, including extensions to the

operators involved in the collisional case.20 In order to better

understand the approximation, consider the simplified infi-

nite sum

Sðjkj; aÞ �
X1

n¼�1

ank0

k2 þ ðank0Þ2
: (20)

For each value of k, this sum converges to a finite value

which satisfies

Sðajkj; aÞ ¼ 1

a
Sðjkj; aÞ: (21)

Thus, a simple truncation of the infinite sum of Eq.

(20), which gives the expression on the right hand side of

Eq. (19) with nn ¼ 1, can be expected to yield a reasonable

approximation. The ratio of this expression to 1=jkj, i.e.,

jkjb
PN�1

n¼0 ank0nn=½k2 þ ðank0Þ2� is shown as the red curve in

Fig. 5(a) for N¼ 7, a ¼ 5, b ¼ 1:04, and k0 ¼ 1. The collo-

cation analysis allows for a more general choice of nn and

optimizes this choice by requiring that the sum in Eq. (19)

agrees exactly with the target expression 1=jkj at a suitably

chosen set of collocation points (k values). An improved fit,

FIG. 4. (a) The time history of the ELM loss fraction (DWped=Wped) or ELM

size calculated from ion temperature (solid curve), density (dashed curve)

and electron temperature (dotted curve) for n=nG ¼ 0:26. (b) The ELM loss

fraction (DWped=Wped) or ELM size vs normalized separatrix density

nseparatrix=nG, where nG ¼ Ip=pa2. The plasma current drive and magnetic

equilibrium are fixed during the scan.
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easily obtained by this procedure, still with N¼ 7 and a ¼ 5,

and hence essentially the same computational cost in a numer-

ical implementation, is shown as the blue curve in Fig. 5(a). It

is seen that the collocation procedure improves the spectral

range of excellent fit by a factor of 100, yielding a fit with a

very small (�1:5%) relative error over a very large spectral

range (�5� 103). Fig. 5(b) shows that the nonlocal flux com-

puted using this method with an implementation of the

Lorentzian terms as solutions of Helmholtz equations using a

finite difference discretization and tridiagonal matrices gives

excellent agreement with the result from the spectral method.

To gain confidence of the non-Fourier Lorentzian

approach, further tests are done for the standard linear bench-

mark of the so-called Cyclone base case using Ottaviani gyro-

fluid model:22 the growth rate of the Ion Temperature Gradient

mode (ITG) as a function of the poloidal wave vector khqi.

The Cyclone base case parameters23 are safety factor q¼ 1.4,

magnetic shear s¼ 0.78, inverse aspect ratio r/R¼ 0.19, nor-

malized temperature gradient length R=LT ¼ 6:9, normalized

density gradient length R=LN ¼ 2:2, electron to ion tempera-

ture ratio Te=Ti ¼ 1, electrostatic, and adiabatic electrons. The

growth rate for this case is shown in Fig. 6 as a function of the

normalized poloidal wave vector (khqi) with (red curves) and

without Landau-damping (blue curves) calculated with both

BOUTþþ code (solid curve) and global ITG eigenvalue

solver (dashed curve) with rjj operator using Fourier Method.

As can be seen from the figure, good agreement is obtained.

The addition of the parallel Landau-damping closure in

Cyclone-base case simulations brings the curve (red curve) of

the linear growth rate vs. toroidal wavenumber into better

agreement with the gyrokinetic results (dotted curve) than in

the absence of this closure (blue curve). It is anticipated that

the inclusion of the toroidal closure will further greatly

improve the level of agreement.

We have implemented and compared the computational

cost of this and other approaches. Fig. 7 shows that the fast

non-Fourier approach has a computational cost scaling for

large numbers of grid cells similar to the Fourier approach.

For modest numbers of grid cells, (<100), direct matrix mul-

tiplication is a viable alternative and can be more efficient

than even the Fourier approach.

V. SUMMARY AND DISCUSSIONS

In conclusion, an isothermal electromagnetic 3-field

gyro-fluid model [Eqs. (3) and (8), and (9) with the auxiliary

FIG. 5. (a) Ratio of actual value of jkj to fit using a sum of 7 scaled

Lorentzians. The “truncated” curve is for a simple truncation fit, while the

“colloc” curve is for an improved fit from the collocation analysis. (b)

Comparison of the nonlocal flux resulting from a temperature profile (black

solid). The curves are nonlocal flux computed with the sum of Lorentzians

(blue dashed), and Fourier method (red), and the local (diffusive) flux com-

puted with finite differences (green dashed), and the Fourier method (orange).

FIG. 6. For Ottaviani physics model using parameters of cyclone base case,

the solid lines are the results from BOUTþþ code using the Lorentzian

method, while the dashed lines are the results from eigenvalue solver. The

dotted curve is from gyrokinetic code. The spectral shift parameter

k0 ¼ 0:05=qR, where q ¼ rBt=RBp is the local safety factor, and r is the

local minor radius. N¼ 7, a ¼ 5; b ¼ 1:04, and nn ¼ 1.

FIG. 7. Computational time versus the number of grid cells in a periodic do-

main for the sum of Lorentzians (non-Fourier), direct matrix multiplication

(Matult), and Fourier approaches.
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equations (4), (10) and (11), (16) and (17)] has been devel-

oped and implemented in the BOUTþþ framework to study

the physics of nonlinear peeling-ballooning mode dynamics.

It is found from linear simulations that retaining complete

first order FLR corrections as resulting from the incomplete

“gyroviscous cancellation” in Braginskii’s two-fluid model

[i.e., including all three terms on the second line of Eq. (15)]

is necessary to obtain good agreement with gyro-fluid results

for high ion temperature cases (Ti � 3keV) when the ion

density has a strong radial variation, which goes beyond the

simple local model of ion diamagnetic stabilization of ideal

ballooning modes. Nonlinear gyro-fluid simulations show

results that are similar to those from the two-fluid model,

namely that the P-B modes trigger magnetic reconnection,

which drives the collapse of the pedestal pressure. Hyper-

resistivity is still required in gyro-fluid simulations to facilitate

magnetic reconnection. Due to the additional FLR-corrected

nonlinear E � B convection for the ion gyro-center density,

for a ballooning-dominated equilibrium, the gyro-fluid model

further limits the radial spreading of ELMs, and the FLR

effect can significantly decrease the ELM size when the ped-

estal ion temperature increases from 1 keV to 4 keV because

high-n modes are stabilized.

The multi-field two-fluid simulations, including addi-

tional physics such as ion acoustic waves, parallel thermal

diffusivities, Hall effect, toroidal compressibility, and

electron-ion friction, show that the change of the peak linear

growth rate is less than 20% in comparison with the results

of the basic 3-field two-fluid model. The difference of ELM

size at the saturation phase between 3-field and 6-field

two-fluid models is 1.4%. Therefore, the 3-field two-fluid

model is good enough to qualitatively understand the ELM

thresholds due to P-B modes and quickly simulate early phase

of ELM crashes with strongly unstable pedestals. However,

ELM dynamics is a multi-scale problem, ranging from meso-

scale MHD events to micro-scale turbulent dissipation due to

electron gyro-radius effects. In order to simulate a ELM cycle

and perform experimental validations, sophisticated multi-

field models are also under development to obtain (1) ELM

power loss via separate ion and electron channels, (2) ELM

power depositions on plasma facing components (PFCs), and

(3) self-consistent turbulence and transport between ELMs for

the pedestal profiles rebuild. Furthermore, we find that the par-

allel thermal diffusivities are large on the top of pedestal plas-

mas, which prevent the further encroachment of ELM

perturbation into core plasmas and therefore leads to steady

state L-mode profiles. This motivates us to develop a nonlocal

parallel Gyro-Landau-fluid thermal transport model valid in

all collisionality regimes.

Both two-fluid and gyro-fluid simulation results show

that for a density or temperature scan with a fixed pressure

profile and for a ballooning-dominated equilibrium, the FLR

effect can significantly decrease the ELM size because high-n

modes are stabilized. For typical experimental scenarios with

natural transition between peeling dominated and ballooning

dominated equilibria, the scaling characteristics of the ELMs

size will be given in a future publication.

Finally, we have developed non-Fourier, configuration-

space-based approaches for the computation of Landau-fluid

operators. We find that the fast non-Fourier approach has a

computational cost scaling for large numbers of grid cells

similar to the Fourier approach. The advanced gyro-fluid

models with closure of high moments are under active devel-

opment to simulate the meso-scale ELM dynamics and

micro-scale turbulence valid in all collisionality regimes,

which preserve particle, momentum and energy conserva-

tion, and include Landau damping, linear and nonlinear

FLR, toroidal drifts, and drift resonance.
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