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Using VisIt to Visualize BOUT++ data 
 

Eric Brugger, LLNL 
 
VisIt is a general purpose, open source visualization and data analysis tool that runs on a variety 
of platforms including Linux, Mac OSX and Windows. It contains functionality for data 
exploration, quantitative analysis, making presentation graphics, visual debugging, and 
comparative analysis. VisIt supports a graphical user interface as well as a powerful Python 
scripting interface. VisIt includes a database reader that reads NetCDF based BOUT++ files. 
During this presentation I will provide a brief overview of using VisIt followed by information 
specific to visualizing BOUT++ data. I will also discuss recent changes to the interpolation 
scheme for mapping BOUT++ data onto a 3D grid that improves the performance and quality of 
the 3D imagery. Furthermore, I will present several Python scripts that make it easy for users to 
create standard images and animations from BOUT++ data, replacing minutes of user interaction 
with the execution of a macro. 



A scalable, fully implicit algorithm for the low-b extended MHD model

L. Chacón and A. Stanier
Los Alamos National Laboratory

Los Alamos, NM 87545

The low-b extended magnetohydrodynamics (low-b XMHD) model is obtained by taking the
large-guide-field and cold-ion limit of the extended MHD model. The resulting model is appealing
owing to its simplicity (it is a small set of scalar equations), and because it describes a wide range
of laboratory magnetic confinement devices, the solar corona, and other astrophysical plasmas in
which large guide fields are present. However, the numerical integration of the low-b XMHD
system is non-trivial due to the presence of disparate time and length scales, which demand both
spatial adaptivity and efficient implicit integration methods for efficiency. The large time-scale
disparity originates in the presence of fast dispersive waves, which result in significant numerical
stiffness and the need of high-order dissipation operators to prevent numerical noise in nonlinear
regimes. Both dispersive hyperbolic systems and high-order differential operators stress numerical
algorithms, and benefit from an implicit treatment.

Despite the relevance of the low-b XMHD system in the study of magnetized plasmas, to
our knowledge there is scant effort devoted towards the development of modern, efficient implicit
algorithms for the numerical solution of the low-b XMHD model. There are several efforts in
the literature record that employ implicit timestepping,1,2,3 but only Ref. [3] makes an effort
to characterize the solver performance. It employs a Newton-Krylov-Schwarz implicit parallel
solver, with incomplete ILU methods with various degrees of overlap in each parallel domain.
Performance is quite sensitive to the domain overlap, and iteration count is quite high, but scales
reasonably well in parallel. Reported speedups with respect to explicit approaches are at most of
an order of magnitude for a 1980⇥1980 mesh.

The focus of this paper is to demonstrate an efficient, optimal nonlinearly implicit algorithm
for the low-b XMHD model.4 The approach uses Jacobian-free Newton-Krylov (JFNK) meth-
ods, effectively preconditioned using physics-based approximations of the Jacobian system that
are multigrid-friendly, and therefore deliver optimal convergence rates. The preconditioning ap-
proach presented here leverages earlier developments of effective physics-based preconditioners
for MHD5 and extended MHD,6 and in particular employs a similar parabolization strategy to that
presented in these studies. We demonstrate the performance of the algorithm with challenging
numerical examples. In particular, we demonstrate optimal algorithmic scaling under mesh refine-
ment, and excellent weak parallel scaling up to 4096 cores. CPU speedups with respect to explicit
methods beyond 3 orders of magnitude are demonstrated with the largest processor counts. We
apply the algorithms to the problem of fast reconnection in the large-guide-field regime to derive
new physical insights for this challenging problem.

1G. T. A. Huysmans, Plasma Phys. Control. Fusion, 47 (2005)
2K. Germaschewski, A. Bhattacharjee, and C.-S. Ng, “The magnetic reconnection code: an AMR-based fully

implicit simulation suite,” in Numerical Modeling of Space Plasma Flows (N. B. Pogorelov and G. P. Zank, eds.), vol.
359 of ASP Conference Series, 2006.

3S. Ovtchinnikov, F. Dobrian, X.-C. Cai, and D. Keyes, J. Comput. Phys., 225 (2007).
4L. Chacón and A. Stanier, J. Comput. Phys., 326 (2016)
5L. Chacón, D. A. Knoll, and J. M. Finn, J. Comput. Phys., 178 (2002)
6L. Chacón and D. A. Knoll, J. Comput. Phys., 188 (2003)
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The SUNDIALS Suite of Time Integrators and Nonlinear Solvers 
 

David James Gardner 
Lawrence Livermore National laboratory 

 
  
SUNDIALS is a suite of robust and scalable solvers for systems of ordinary differential equations, 
differential-algebraic equations, and nonlinear equations. The suite consists of six packages: 
CVODE(S), ARKode, IDA(S), and KINSOL. Each package is built on a common vector and linear 
solver API allowing for application-specific and user-defined linear solvers and data structures, 
encapsulated parallelism, and algorithmic flexibility. As part of the DOE’s Exascale Computing 
Program and FASTMath Institute, SUNDIALS is enabling time integrators for exascale 
architectures. In this presentation we will summarize capabilities of the SUNDIALS suite, 
overview current development efforts, and discuss incorporation of new work in multirate and 
parallel-in-time integration methods. 
 



High Performance Computing Resources at NERSC 
 

Brian Ffriesen 
 

Lawrence	Berkeley	National	Laboratory	
	
I	 present	 the	 high	 performance	 computing	 resources	 available	 at	 the	 National	 Energy	
Research	Scientific	Computing	Center	(NERSC)	at	Lawrence	Berkeley	National	Laboratory.	
NERSC	is	the	mission	computing	facility	for	the	DOE	Office	of	Science,	supporting	7000	users	
in	49	states	and	47	countries,	contributing	to	800	projects	spanning	all	6	programs	in	the	
Office	of	Science.	I	describe	the	architectural	details	of	Cori	and	Edison,	the	two	HPC	systems	
currently	in	production	at	NERSC,	as	well	as	the	software	available	to	application	developers	
who	use	those	systems,	including	compilers,	debuggers,	and	profiling	tools.	I	briefly	discuss	
future	directions	of	computing	at	NERSC.	
 



Progress on Scalable Solution of Implicit FE Continuum Plasma Physics 
Models 

 
John N. Shadid, Roger P. Pawlowski, Edward P. Phillips, Paul T. Lin, Sidafa Conde, SIbu 

Mabuza, Eric Cyr, Sean Miller 
 

Sandia National Laboratory 
  
The mathematical basis for the continuum modeling of plasma physics systems is the solution of 
the governing partial differential equations (PDEs) describing conservation of mass, momentum, 
and energy, along with various forms of approximations to Maxwell's equations. The resulting 
systems are characterized by strong nonlinear and nonsymmetric coupling of fluid and 
electromagnetic phenomena, as well as the significant range of time- and length-scales that these 
interactions produce.  To enable accurate and stable approximation of these systems a range of 
spatial and temporal discretization methods are commonly employed. In the context of finite 
element spatial discretization methods these include mixed integration, stabilized and variational 
multiscale (VMS) methods, and structure-preserving (physics compatible) approaches.  For 
effective long-time-scale integration of these systems the implicit representation of at least a subset 
of the operators is required.  
 
Two well-structured approaches, of recent interest, are fully-implicit and implicit-explicit (IMEX) 
type time-integration methods employing Newton-Krylov type nonlinear/linear iterative 
solvers.  To enable robust, scalable and efficient solution of the large-scale sparse linear systems 
generated by a Newton linearization, fully-coupled multilevel preconditioners are developed. The 
multilevel preconditioners are based on two differing approaches. The first technique employs a 
graph-based aggregation method applied to the nonzero block structure of the Jacobian matrix. 
The second approach utilizes approximate block factorization (ABF) methods and physics-based 
preconditioning approaches that reduce the coupled systems into a set of simplified sub-systems 
to which optimal multilevel methods are applied.  
  
To demonstrate the flexibility of implicit/IMEX FE discretizations and the fully-coupled Newton-
Krylov-AMG solution approaches various forms of resistive magnetohydrodynamic (MHD) and 
multifluid electromagnetic plasma models are considered. In this context, we first briefly discuss 
the mathematical models and formulations for a subset of these systems, and then present results 
for representative plasma physics problems of current interest. Additionally, the discussion 
considers the robustness, efficiency, and the parallel and algorithmic scaling of the preconditioning 
methods. Weak scaling results include studies on up to 1M cores.  
  
*This work was supported by the DOE Office of Science Advanced Scientific Computing 
Research - Applied Math Research program and an ASCR/Office of Fusion Energy SciDAC 
Partnership Project at Sandia National Laboratories. 
  
 
 



Contemporary machine learning: techniques for practitioners in the physical 
sciences 

 
Brian K. Spears 

Lawrence Livermore National Laboratory 
 
Machine learning is the science of using computers to find relationships in data without explicitly 
knowing or programming those relationships in advance. Often without realizing it, we employ 
machine learning every day as we use our phones or drive our cars. Over the last few years, 
machine learning has found increasingly broad application in the physical sciences. This most 
often involves building a model relationship between a dependent, measurable output and an 
associated set of controllable, but complicated, independent inputs.  The methods are applicable 
both to experimental observations and to databases of simulated output from large, detailed 
numerical simulations.  
 
In this tutorial, we will present an overview of current tools and techniques in machine learning 
– a jumping-off point for researchers interested in using machine learning to advance their 
work.  We will discuss supervised learning techniques for modeling complicated functions, 
beginning with familiar regression schemes, then advancing to more sophisticated decision 
trees, modern neural networks, and deep learning methods. Next, we will cover unsupervised 
learning and techniques for reducing the dimensionality of input spaces and for clustering data.  
We’ll show example applications from multiple scientific disciplines.  Along the way, we will 
describe methods for practitioners to help ensure that their models generalize from their 
training data to as-yet-unseen test data.  We will finally point out some limitations to modern 
machine learning and speculate on some ways that practitioners from the physical sciences 
may be particularly suited to help. 



Overview of the modular finite element methods 
 

Tzanio Kolev 
Lawrence Livermore National Laboratory 

 
In this talk, we present an overview of the modular finite element methods (MFEM) library 
(mfem.org), including its main abstraction classes, their corresponding linear algebra objects, and 
implementation variants. We discuss the components required for the construction and application 
of general finite element discretization operators and the various choices for their software 
implementation, e.g. as a single assembled parallel CSR matrix, or as a product of linear operators, 
i.e. "matrix-free" representations. We highlight the pros and cons of the various choices based on 
the discretization parameters such as solution space order, mesh order, choice of quadrature, etc., 
and present numerical illustration with MFEM examples. We also report on the progress of the 
ongoing efforts to implement efficiently and integrate seamlessly support for architectures with 
accelerators (e.g. GPUs) in the library. 



Overview of Forward and Inverse Uncertainty Quantification Methods 
 

Tim Wildey1 
 

1Sandia National Labs: Optimization and UQ, Albuquerque, NM, USA 
tmwilde@sandia.gov 

 
Uncertainty and error are ubiquitous in predictive modeling and simulation due to unknown 

model parameters and various sources of deterministic and stochastic error.  Consequently, there 
is considerable interest in developing efficient and accurate methods to perform both forward 
uncertainty quantification (UQ): given uncertain model inputs, quantify the uncertainty in the 
outputs; and inverse UQ: given uncertain output data, quantify the uncertainty in the model 
inputs.  The goal of this presentation is to give a high-level perspective on the various methods 
available to enable forward and inverse propagation of uncertainty for physics-based models.  
The first part of this presentation will focus on the following topics in forward UQ: 

• Sensitivity analysis 
• Monte Carlo sampling methods 
• Response surface approximations 
• Multi-level and multi-fidelity methods 

Most of these methods are available in open-source toolkits, such as Dakota [1].  The second part 
of the presentation will focus on the following topics in inverse UQ: 

• Ill-posedness in deterministic and stochastic inverse problems 
• Bayesian formulations for parameter estimation [2] 
• Consistent formulations for stochastic inversion [3] 
• Optimal experimental design [4] 

Numerical examples using physics-based models will be given throughout the presentation to 
demonstrate each of the methods/concepts. 

1. Adams, B.M., Bauman, L.E., Bohnhoff, W.J., Dalbey, K.R., Ebeida, M.S., Eddy, J.P., 
Eldred, M.S., Hough, P.D., Hu, K.T., Jakeman,  J.D., Stephens, J.A., Swiler, L.P., Vigil, 
D.M., and Wildey, T.M., "Dakota, A Multilevel Parallel Object-Oriented Framework for 
Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity 
Analysis: Version 6.0 User’s Manual," Sandia Technical Report SAND2014-4633, July 
2014. Updated November 2015 (Version 6.3). 

2. Stuart, A. M., “Inverse problems: A Bayesian perspective”, Acta Numerica, 19 (2010). 
3. Butler, T., Jakeman, J., and Wildey, T. “Combining push-forward measures and Bayes' rule 

to construct consistent solutions to stochastic inverse problems”. SIAM Journal on Scientific 
Computing, 40:2 (2018).  

4. Huan, X., and Marzouk, Y. M. “Simulation-based optimal Bayesian experimental design for 
nonlinear systems”. Journal of Computational Physics 232, 1 (2013).� 


