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Learning-based predictive models:
a new approach to integrating large-scale simulations 
and experiments 
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Today, I’d like to do a few things

§ Identify a key challenge in predictive science at the lab

§ Show some ways we’ve tried to meet that challenge with deep learning

§ Inspire you to consider these techniques for your own work

§ Entertain you a bit

Data science advances offer an opportunity to change how we 
do predictive science at the Laboratory
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At LLNL, and everywhere, we love our models
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At LLNL, and everywhere, we love our models

beautiful 
simulation 
result

theorist

code 
developerdesigner

experimentalist
equipped with data

Experiments are not always kind to our models

typical 
response
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We strive to advance our predictive capability by 
challenging simulation with experiment

Traditional pillar
High-performance computing

Traditional pillar
Large-scale experiments

HYDRA simulation NIF X-ray image
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Traditional pillar
High-performance computing

Traditional pillar
Large-scale experiments

We compare a few key 
scalars – leaving our 

models less constrained

Ysim
Tion,sim
P2,sim

Yexpt
Tion,expt
P2,expt

HYDRA simulation NIF X-ray image

We strive to advance our predictive capability by 
challenging simulation with experiment
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Traditional pillar
High-performance computing

Traditional pillar
Large-scale experiments

We compare a few key 
scalars – leaving our 

models less constrained

We need new techniques that improve our predictions in the 
presence of experimental evidence

Ysim
Tion,sim
P2,sim

Yexpt
Tion,expt
P2,expt

HYDRA simulation NIF X-ray image

We strive to advance our predictive capability by 
challenging simulation with experiment
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Machine learning can dramatically improve 
predictive modeling across the Laboratory

Traditional pillar 
high-performance computing

Traditional pillar
Large-scale experiments

New pillar
Machine learning to compare 

simulation and experiment

Machine learning will allow us to use our full data sets to 
make our models more predictive

HYDRA simulation NIF X-ray image
Complete simulation 
and experiment data

Improved prediction

Deep neural 
network
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§ We need improved models
— That fully utilize available data sets
— That estimate uncertainty
— That improve by exposure to experimental data

§ We need software tools to develop and guide those 
models

§ We need computational platforms that support the 
advancement of these predictive tools

We need three technological advances to transform how we do 
predictive science at the Laboratory

These advances can improve the modeling chain across programs and missions

Simulation, experiment, and 
deep learning

Computational workflows 
and big data

Heterogeneous exascale
computers
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We need a framework that couples simulation and experiment 
using machine learning to improve prediction

Simulation 
workflow

Experimental dataDeep learning

Simulations 
with intelligent 

parameter 
sampling

and
Post-

processing done 
in-situ during 

simulation

Experiments

Learning
Model

using advanced 
machine learning

Model and 
uncertainties 

founded on 
experiments 

and 
simulations

Elevate model
using transfer learning 
to adjust to experiment

compute
d = expt - sim

2

1

Co-design new computing platforms
Provide a Laboratory-specific vision for modern machine architectures

suggest 
experiments

Advanced architectures3

suggest 
physics 
updates Scientists
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I am proud to present the work of a wonderful team

Machine Learning Element
Timo Bremer

Workflow Element 
Luc Peterson

Machine-learned Predictive Models
PI, Brian Spears

Jay Thiagarajan
Rushil Anirudh 
Shusen Liu

Jim Gaffney
Bogdan Kustowski (new hire) 
Gemma Anderson (new hire) 
Francisco Beltran
Michael Kruse

Sam Ade Jacobs
Brian Van Essen
David Hysom
Jae-Sung Yeom

Peter Robinson
Jessica Semler
Luc Peterson
Ben Bay (new hire)
Scott Brandon

Vic Castillo
Bogdan Kustowski
Kelli Humbird (LG scholar) 
David Domyancic
Richard Klein

John Field
Steve Langer
Joe Koning

Michael Kruse
Dave Munro
Robert Hatarik

Architectures Elevation and UQ

Large-scale Learning

Workflow Tools

In-situ tools

Intelligent Sampling

Data Harvesting
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§ Multi-modal deep learning that harnesses powerful correlations in physics 
data

§ Uncertainty estimation that provides confidence measures for both 
outputs and inputs to explain data

§ Model elevation that improves predictions and uncertainties in face of 
experiment

We are developing a learning code to bridge the 
gap between simulation and experiment
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Deep learning allows us to learn structure in data

§ We use deep neural net models to map inputs to outputs

§ Deep neural networks better capture rich data structure
— Hidden layers build representation of data
— Called a latent (or feature) space spanned by latent variables
— Learn by minimizing the loss function (prediction matches truth)

input, x output, y
Capsule radius
Laser brightness

Neutron yield
Ion temperature

input, x

output, y

hidden

y = g(z)

latent, z

y = f(x)

latent, z
z = h(x)

Engineering and exploiting the latent space is one of our key strategies
Contemporary deep learning: a guide for practitioners in the physical sciences arXiv:1712.08523

https://arxiv.org/abs/1712.08523
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Deep neural networks build efficient descriptions of data to 
improve predictions

“Input layer”
Input features, X

Hidden layer of
1st autoencoder

Hidden layer of
2nd autoencoder

Hidden layer of
3rd autoencoder

x1 x2 x3 x4

h1 h2 h3

W(1)

g1 g2

W(2)

f1 f2

W(3)

Input pixels

Edges at various
orientations

Object parts 
(combination of 
edges)

Object models

[Example from Honglak Lee, Barry Chen]

Latent space

We need these efficient descriptions for ICF, Weapons, and other programs
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Design requirements for learned models

1. Use all the available data signatures

2. Be physically consistent

3. Be self consistent

For scientific prediction, we want our learned model to meet a 
few key requirements

Inertial Confinement Fusion (ICF) 
as a testbed problem 

inputs: laser, target design

outputs: images, scalars, time histories

simulation
experiment

learned 
model

x

y
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We developed a cyclic system of sub-networks to engineer 
required performance features 

Input
Parameters

X Y

Predicted
Output

Forward Model
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We developed a cyclic system of sub-networks to engineer 
required performance features 

Input
Parameters

X Y

Predicted
Output

Forward Model 1 Surrogate Fidelity Loss
Learn a metric for comparing outputs

1. Uses all the data 
engineers the latent space

Performance features

UQ



LLNL-PRES-XXXXXX
22

Brian Spears
Learning-based predictive models

We developed a cyclic system of sub-networks to engineer 
required performance features 

Input
Parameters

X Y

Predicted
Output

Forward Model 1 Surrogate Fidelity Loss
Learn a metric for comparing outputs

Discriminator Model

2 Physical Consistency Loss

1. Uses all the data  
engineers the latent space

2. Enforces physical 
consistency      
predictions look like 
training examples

Performance features

UQ
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We developed a cyclic system of sub-networks to engineer 
required performance features 

Input
Parameters

X Y

Predicted
Output

Forward Model 1 Surrogate Fidelity Loss
Learn a metric for comparing outputs

Discriminator Model

2 Physical Consistency Loss

Inverse Model

3 Cycle Consistency Loss

X

Predicted
Parameters

1. Uses all the data 
engineers the latent space

2. Enforces physical 
consistency      
predictions look like 
training examples

3. Enforces self 
consistency 
regularizes ill-posed 
inverse

Performance features

UQ
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True Simulation 
Outputs

Predicted using 
Forward Model

Input Parameters: X (blue) vs G ( F(X) ) (green) Output space
Y F(X)

True input parameters (Blue)
Inferred input parameters (Green) 

Sensitive parameters are
recovered with higher fidelity

The neural network performance requirements have led to successful prediction

Position in frame

Size
Edges

Emission 
centering

Integral features are predicted 
without explicit programming 

x x

Cyclic system infers input parameters 
from output observations

The learning system reproduces and recovers key physics 
information

Miss some 
gradients

conductivity asymmetry
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Predicted image
(pixel value)

Error map
(pixel-wise variance)

Predicted image and its error map Predicted scalars and their error bars

Variational extensions have equipped all output 
quantities with uncertainty measures

Our predictive tools are prepared for statistical comparison with experiment

yield
T
ion

bang 
time
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§ Learned models know what they’re taught, and only what they’re taught

§ Humans (even scientists and engineers) can be distracted by context

Depending on the situation, networks can avoid or inherit 
human bias
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Audience interaction

Find the toothbrush in 1 second!

From Heather Murphy Oct. 6, 2017 NYTimes
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Audience interaction

Is there a parking meter present?
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Audience interaction

Trained neural nets recognize the meter with very high accuracy.

Humans often miss the meter*.

Expectations (e.g., about scale) sometimes prevent us from finding 
obvious patterns. 

But, what if we’ve used our simulations to build in bias?

* “Humans, but Not Deep Neural Networks, Often Miss Giant Targets in Scenes”
Miguel P. Eckstein, Kathryn Koehler, Lauren E. Welbourne,Emre Akbas
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Next, we turn to transfer learning to remove 
simulation bias and better match experimental data
§ Train the network on simulated 

data

§ Re-train networks to predict 
experimental data

§ Well-suited to ICF data
— Improves prediction accuracy
— Requires much less data than initial 

training
— Measures discrepancy as a function

of input parameters

Transfer learning produces elevated models that incorporate simulation and experiment

Simulation data

output, z

Experimental data

output, z

transfer
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We’ve tested transfer learning with simplified data sets

§ Simulation data set
— 1K sims with nominal physics

§ Experimental data set
— Transfer data: 20 ”experiments” with altered 

physics
— Validation data: 1K next “experiments” with 

altered physics

§ Compare predictions before and after transfer 
learning
— Simulation surrogate vs validation data
— Elevated surrogate vs validation data

Simulation data

output, z

Experimental data

output, z

transfer

1K nominal 
simulations

20 perturbed 
“experiments”

1K experiment validation output, z
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Numerical tests show successful transfer learning using few 
experiments

Large prediction 
error without 

transfer learning

Smaller prediction 
error after transfer 

learning

20 experimental 
data points 
utilized in 

retraining 1 
layer

Misfit of training-
normalized 

outputs

Misfit of training-
normalized 

outputs

1k validation 
points

difference between simulation surrogate and experiment validation

difference between elevated surrogate and experiment validation
Transfer learning



LLNL-PRES-XXXXXX
35

Brian Spears
Learning-based predictive models

§ Size of discrepancy between simulation model and 
true experiment model

§ Model capacity needed to capture the discrepancy

§ Experimental data volume needed to satisfy the 
model capacity

We are developing a framework to describe the applicability of 
transfer learning for NIF experiments and Laboratory missions

Three key  features that control applicability of transfer learning
Amount of retraining data                     
impacts predictive quality

overfitting
poor prediction

good fitting
good prediction
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Deep learning needs big data, so we’d better be 
able to produce it

§ Management of simulation production and sampling

§ Reduction of raw simulations to observables

§ Driving the execution of the learning models
Simulation workflow Experimental dataAnalytics and calibration

Simulations 
with intelligent 

parameter sampling
and

Post-processing 
done in-situ during 

simulation

Experiments

Learning
Model

using advanced 
machine learning

Model and 
uncertainties 

founded on 
experiments 

and 
simulations

Calibrate model
using transfer learning to 

adjust to experiment

suggest simulations

compute
d = expt - sim

Y

P(Y)
Ys YeYm

2

1

suggest experiments

suggest 
physics 
updates
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§ During the run, is the simulation evolving as 
predicted?
— Yes? No new information.  Terminate. Invest in a 

new simulation.
— No? Unpredicted behavior! Continue.

§ Speculate on many more simulations than we 
can finish.

§ More completely probe parameter space for 
further cost reduction.

Even at very large scale, we must choose carefully 
which simulations to execute

Focus Area 2:
Workflow Code

Speculative sampling

y 2
(t)

y1(t)

time

pr
ed

ict
ion

Novel 
approach

Speculative sampling may require far less data than random sampling
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Initial speculative sampling experiments delivered better learned models for 
much less data

Total Global 
Model Error
vs Iteration

Simple Sampling

Speculative Sampling

Model error in 
local regions

Initial Error
Simple 

Sampling
Speculative
Sampling

Castillo et al.

Agent-based exploration
Deep Mind, November, 2017

2x data reduction
without optimization
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The potential benefits of speculative sampling come at a cost –
a new simulation workflow paradigm
§ Not all simulations complete; may 

restart

§ An inherently multi-task workflow
— Simulators
— Learners
— Predictors

§ Tasks require different hardware
— Simulate on CPUs
— Learn on GPUs

§ Many asynchronous decisions
— But, need global coordination

§ Current practices that pose obstacles 
to speculative sampling
— File-system based task coordination
— Single-machine ensembles
— Pre-defined & dedicated resources for 

each ensemble & each sample
• eg single batch job, dedicated nodes

We are building a new kind of workflow 
to enable HPC speculative sampling

Robinson, Semler et al.
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Existing simulation workflows from ICF and elsewhere are largely 
linear

Store ResultsSimulate Physics

Robinson, Semler et al.
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A speculative sampling workflow is different

Store ResultsSimulate Physics

Robinson, Semler et al.
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A speculative sampling workflow is multi-task

Learn Predict

Explore

Simulate Physics

Store Results

Robinson, Semler et al.
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Speculative sampling isn’t a linear workflow

Learn Predict

Explore

Simulate Physics

Store Results

Robinson, Semler et al.
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We’ve built a novel ‘assembly line’ workflow to provide 
speculative sampling with the required flexibility

Learn Predict

Explore

Simulate Physics

Store Results

Robinson, Semler et al.
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We’ve built a novel ‘assembly line’ workflow to provide 
speculative sampling with the required flexibility

Learn Predict

Explore

Simulate Physics

Store Results

Robinson, Semler et al.

• Workers can exist on different machines
• Queues persist across batch jobs
• Queues can be monitored in real time
• Message-passing protocol avoids file systems

• Flexibility
• Scalability
• Robustness
• Analysis
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We’ve built a novel ‘assembly line’ workflow to provide 
speculative sampling with the required flexibility

Learn Predict

Explore

Simulate Physics

Store Results

Robinson, Semler et al.

• Workers can exist on different machines
• Queues persist across batch jobs
• Queues can be monitored in real time
• Message-passing protocol avoids file systems

• Flexibility
• Scalability
• Robustness
• Analysis

Live Persistent Queue Servers on CZ A pilot program for 
persistent services @ LC
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We’ve built a novel ‘assembly line’ workflow to provide 
speculative sampling with the required flexibility

Learn Predict

Explore

Simulate Physics

Store Results

Robinson, Semler et al.

• Workers can exist on different machines
• Queues persist across batch jobs
• Queues can be monitored in real time
• Message-passing protocol avoids file systems

• Flexibility
• Scalability
• Robustness
• Analysis

Live Persistent Queue Servers on CZ A pilot program for 
persistent services @ LC

Message Broker
à RabbitMQ

Communication meets LC 
security requirements
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We’ve built a novel ‘assembly line’ workflow to provide 
speculative sampling with the required flexibility

Learn Predict

Explore

Simulate Physics

Store Results

Robinson, Semler et al.

• Workers can exist on different machines
• Queues persist across batch jobs
• Queues can be monitored in real time
• Message-passing protocol avoids file systems

• Flexibility
• Scalability
• Robustness
• Analysis

Live Persistent Queue Servers on CZ A pilot program for 
persistent services @ LC

Message Broker
à RabbitMQ

Communication meets LC 
security requirements

Python Worker + Tasking API
à celery

Widely-used open source 
software (e.g. Instagram)
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We’re aiming to make a “splash” for early Sierra access

§ Generate 1 billion semi-analytic ICF implosion simulations

— Oversample a high-dimensional space

— Train a deep learning model on a physics problem

— Develop new physics insight

§ Shareable data for the machine learning community

— Beyond MNIST and ImageNET

— Several billion images, plus scalars, time histories

§ Challenging and meaningful problems unique to the Laboratory

An exciting opportunity to establish Lab leadership in 
cognitive computing and data science
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Advanced machine learning workflows must navigate new 
advances in computer architectures

§ CPU

— Good branching control

— Parallelism across large networks

§ General purpose GPU 

— highly parallel

— high memory bandwidth 

§ Inference accelerators

— 16-bit precision

— Low power consumption

§ Next-gen machines, like Sierra, have all 3 … today!

Choose your processor wisely:
DJINN in TensorFlow on CPU vs GPU

GPU trains 2x 

faster than CPU

430 training epochs

200 training 

epochs
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What commerce wants from a next-generation computer may 
not match what science wants

Infrequent, high-cost training
Frequent, low-cost evaluation

Frequent, low-cost training
Less-frequent evaluation?

We must engage in co-design with vendor partners to develop Lab-appropriate 
machines

Tens of billions of dollars 
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Problems only need a few essential ingredients

1. A reliable simulation code (you work at LLNL, after all)

2. A deep learning architecture, appropriately tuned

3. An advanced workflow code (you can have ours!)

4. Experiments (you’ll have to get your own)

5. An interdisciplinary team with sensibilities in data science (see Data Science Institute)

In most cases, we could substitute your application for ours
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We are advancing the way the Lab develops 
its predictive models across missions

Traditional pillar 
high-performance computing

Traditional pillar
Large-scale experiments

New pillar
Machine learning to improve 

predictive science

These tools and techniques could work for you

HYDRA simulation NIF X-ray image

Deep learning to 
improve prediction

Advanced workflows 
to support learning

New architectures for 
modern computation




