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Interaction of boundary plasma turbulence with RF waves presents a 
challenging and important issue in tokamak edge physics

• Heating and driving current in tokamak plasma by 
intense RF waves is critically important for for existing 
tokamaks and future fusion reactors

• Edge plasma affects penetration of RF waves into 
plasma (scattering, absorption

• RF waves have effect on edge plasma
- RF sheath
- Ponderomotive forces

As a part of our ongoing RF SciDAC project, we are developing a BOUT++ based model 
for edge plasma turbulence, including RF effects
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For existing tokamaks, electrostatic fluid models should be 
reasonable for SOL and divertor

C-Mod NSTX DIII-D

amin [m] 0.3 0.8 0.7

Rmaj [m] 0.9 1.5 2.3

Bt [T] 4.0 0.3 1.5

Bp [T] 0.7 0.2 0.3

Ni,sepx [m-3] 3e19 6e18 1e19

Te,sepx [eV] 30 20 100

Lc/lei 4. 1.0 0.2

k^ri 0.1 0.9 0.5

b 0.2e-4 5e-4 2e-4

• For existing tokamaks, SOL is relatively collisional, low beta, small gyro-radius => fluid, 
electrostatic models should work well there

• For future tokamaks (ITER, DEMO, etc.) probably less collisional SOL 
4



What physics is important for tokamak SOL turbulence?

1. Drift-wave instability (known to be important for SOL-like parameters in 
laboratory plasma experiments)

2. Resistive-ballooning instability ( curvature drive is important for 
tokamak in general, even if SOL plasmas are ideally stable)

3. Sheath-driven instability (predicted theoretically to play a role)
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What physics is important for tokamak SOL turbulence?

1. Drift-wave instability (known to be important for SOL-like parameters in 
laboratory plasma experiments)

2. Resistive-ballooning instability ( curvature drive is important for 
tokamak in general, even if SOL plasmas are ideally stable)

3. Sheath-driven instability (predicted theoretically to play a role)

Beyond that, potentially a whole zoo of physics:
• various kinetic phenomena 
• neoclassical orbits 
• magnetic stochasticity
• neutrals
• impurities
• radiation
• sputtering
• materials
• etc.
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Envisioning a hierarchy of models, increasing complexity of physics 
and geometry, for a plasma + RF and/or divertor model

• Initially simplifying the 
geometry in favor of focusing 
on physics model

• Gradually we’ll increase 
geometric complexity by adding 
realistic shaping and branch-
cuts

• Eventually use full edge domain

• Avoiding known difficulties with 
including zonal flows in edge 
turbulence model in full 
tokamak geometry

The model is motivated by Lodestar’s SOLT model but extended to 3D hence dubbed SOLT3D
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For including geometric shape features, an efficient method has been 
developed based on conformal mapping

• Range of geometric shapes produced by appropriate choice of complex function w(z)
• Potentially can implement Schwartz-Christoffel maps (polygon to polygon) 
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Implementation and testing of physics models contained in SOLT3D

• Drift-Resistive-Ballooning Mode
- Hybrids of drift-resistive and ballooning 

modes, driven by radial gradients of 
plasma pressure 

• Conducting wall mode instability
- Flute-like modes driven by radial 

gradient of plasma temperature and 
sheath boundary conditions

• Blobs (nonlinear ballooning instability)
- Manifestation of nonlinear ballooning
- Ideal ballooning drive contained also in 

resistive ballooning models
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Drift-Resistive-Ballooning Mode (DRBM) 2-field physics model 
implemented in SOLT3D module

Radial gradients of P 
and Ni and magnetic 
curvature drive DRBM 
instability
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Main nonlinear 
terms to be 
added, e.g.,

DRBM is a small subset of plasma fluid equations that has produced relevant edge 
turbulence results (pioneered by Guzdar et al. at U. Maryland in early 1990s) 10



• Dispersion relation found from det(M)=0
• Can be done by hand but with Mathematica extends easily
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Dispersion relation produced with Mathematica

Extra terms can be added
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Dispersion relation produced with Mathematica

Mathematica gives coefficients (a=0.51) for:  w0, w1 ,w2
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DRBM linear dispersion relation is quadratic equation
containing ballooning (interchange) and drift terms 

Drift-specificBallooning-specific

where
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DRBM linear dispersion relation has 
one stable and one unstable root

ω 2 + iσ ||ω +ΩK
2 − iσ ||ω* = 0

Using Vieta’s formulas, infer locations of roots in complex w plane
w1+ w2 = -i s||
w1 w2 = -i s|| w*  + WK

2

=>

w1=a+bi
w2=-a+ci

bc = -a2 - WK
2< 0

Dispersion relation
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Showing growth rate and real frequency for unstable root of DRBM

For Wk=0 the standard drift-wave dispersion relation, e.g., in F. Chen’s textbook 15



Cylindrical slab geometry used for 
verifying DRBM linear dispersion relation

Geometry, magnetic field, grid etc. constructed by a grid-generator built for SOLT3D 16



BOUT++ data points are right on 
analytic DRBM dispersion relation curves 
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Implementation and testing of physics models contained in SOLT3D

• Drift-Resistive-Ballooning Mode
- Hybrids of drift-resistive and ballooning 

modes, driven by radial gradients of 
plasma pressure 

• Conducting wall mode instability
- Flute-like modes driven by radial 

gradient of plasma temperature and 
sheath boundary conditions

• Blobs (nonlinear ballooning instability)
- Manifestation of nonlinear ballooning
- Ideal ballooning drive contained also in 

resistive ballooning models
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Conducting-Wall Mode (CWM) 2-field physics model 
is included in SOLT3D module
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Radial gradient of Te and 
sheath B.C. drive CWM 
instability

• CWM was studied theoretically by Berk, Ryutov, et al. in early 1990s
• Expected to exist in tokamak edge but still not confirmed experimentally

Linearized sheath B.C.
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CWM analytic linear dispersion relation leads to 
transcendental complex equation 

• Consider symmetric parallel domain –L≤x≤L
• Use fastest growing mode ~cos(k|| x)
• Assume for sheath B.C.   L1=0, L2=1 

• Two asymptotic limits: 
• x<<1 => h<<1 =>

• x>>1 => tan(h)≈i =>  w=const

Dispersion relation
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Numerical results from BOUT++ match 
analytic asymptotic CWM growth rate

BOUT++ 
data points

analytic 
asymptotic 
form for 
large kperp 

analytic 
asymptotic 
form for 
small kperp 

21
Calculations are done in a slab geometry, 
for a particular choice of magnetic field and plasma profiles



Implementation and testing of physics models contained in SOLT3D

• Drift-Resistive-Ballooning Mode
- Hybrids of drift-resistive and ballooning 

modes, driven by radial gradients of 
plasma pressure 

• Conducting wall mode instability
- Flute-like modes driven by radial 

gradient of plasma temperature and 
sheath boundary conditions

• Blobs (nonlinear ballooning instability)
- Manifestation of nonlinear ballooning
- Ideal ballooning drive contained also in 

resistive ballooning models
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Blob are field-aligned density filaments 
driven radially outward by magnetic curvature
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This is what happens with toroidal plasma 
without rotational transform! 23

Can be physically understood in either 
single-fluid or two-fluid picture

Linearized 
sheath B.C.



In numerical simulations, blobs show two types of behavior:
mushroom breakup or interchange breakup 

1Krasheninnikov, D’Ippolito, and Myra, 
J. Plas. Phys. (2008), vol. 74, part 5, pp. 679–717   24
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• For small blobs, d<<1 KH mushroom
• For large blobs, d>>1 interchange breakup1

Normalized blob size

d≤1

d≥1

Current SOLT3D results:



Coupling with RF physics: added terms in plasma equations represent 
sources of energy and momentum
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Particle and heat flux driven by dissipative wave momentum and heat flux 
absorption

• Forces:

- dissipative wave momentum absorption, perpendicular wave particle 
energy exchange by dissipation

- reactive (pressure-like) components of wave wave pressure and 
perpendicular wave-particle energy

• Can also drive convective structures that interact with turbulence

Myra et al., Phys. Plasmas 11, 1786 (2004)



Coupling with RF physics: boundary conditions representing rectified 
sheath couple to turbulence

• Initial antenna model: biased region on plasma surface
• Surface bias extends inwards via Laplacian in vorticity
• Drives convection
• Potentially causes transport and stabilization or 

destabilization of instabilities (and turbulence)

toroidal

po
lo

id
al

26
Myra et al., Nucl. Fusion 46, 455 (2006); 
Myra and D’Ippolito, Phys. Plasmas 22, 062507 (2015)



Summary

• Basic edge turbulence model SOLT3D implemented in BOUT++
• Similar to Lodestar’s model SOLT but extended to 3D
• Simplified geometry initially, adding geometric details later
• Supports main plasma physics relevant to SOL and divertor:

- Drift-resistive-ballooning mode (DRBM)
- Conducting-wall mode (CWM)
- Blobs (propagating coherent filamentary structures)

• Verified against analytic theory and previous simulations
• Implementation of terms & BC relevant to RF antenna ongoing
• Nonlinear simulations with turbulence ongoing
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