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Introduction 

• Nonlinear interactions: RF waves + plasma + material surfaces 
• Tutorial: emphasis on underlying physical mechanisms 
• Scope: emphasis on SOL turbulence, ICRF (ion cyclotron range of freq.) 

– touch on LH 
– touch on nonlinear core interactions 

• Referencing 
– incomplete, mainly workers in the area 
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Motivation 
• Plasma heating and current drive with ICRF waves has been successful in 

many tokamak experiments 
• ICRF foreseen to play an important role in ITER: cost effective and flexible 
• Unwanted interactions with SOL plasma and material surfaces can be 

problematic in some regimes 
– enhanced sputtering 
– surface power dissipation 
– material erosion and damage 
– modified edge transport and flows (can be beneficial too) 
– RF wave scattering 

• Understand, predict and control 
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Outline 

• Background 
• ICRF driven sheaths 
• RF-driven convection 
• Ponderomotive force 
• Scattering of RF by turbulence  
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Background 
(typical tokamak edge/SOL and RF parameter ranges) 

Time scales 
– turbulence: ~ ω∗  ~  <  few 100 kHz 
– ICRF: ~ Ωi  ∼ 10’s MHz;   LH:  ~ GHz 
Turbulence is frozen on the RF time scale 
<RF>t affects turbulence; “frozen” turbulent 
structures affect RF propagation 

Space scales 
– turbulence: ⊥  ~ 10 ρi ~ cm;    ||  ~ global  
– ICRF: ⊥ ~ δe, δi  ~  mm to 10’s cm;  

|| ~ cm – m 
Turbulence and ICRF space scales can be 

disparate or comparable 
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Amplitudes (δΦ) 
– turbulence: ~ Te/e ~ 10 V 
– ICRF: ~ up to fraction of Vantenna ~ 100’s of V 

 ICRF can present a large amplitude perturbation 



Interactions between RF, turbulence and transport 

• Turbulence is frozen on the RF time scale 
• Turbulence and ICRF space scales can be disparate or comparable 
• ICRF can present a large amplitude perturbation 

– near the antenna where fields are large 
– where the group velocity is slow    P = S⋅A ∝ vgW ∝ vg |E|2        (large k) 
– where the temperature is low  ψpond > T/e,  Vrf > T/e 
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Background: RF waves 
What you need to know 

• ICRF (Ion cyclotron range of frequencies) antennas attempt to launch a pure fast wave (FW) 
= compressional Alfven wave which propagates into the core and is absorbed 

– electromagnetic 
– E is ⊥ to B0 and elliptically polarized; E|| is negligible 
– can be evanescent in the SOL with ~ cm scale lengths 
– antenna coupling to FW improves at high antenna ne 

• In practice antennas also excite some power in the slow wave (SW) branch = shear or 
torsional Alfven wave  

– E⊥ is very large for a given power (P ~ vg |E|2) 
– E|| is significant 
– can be evanescent (high ne) or propagating (low ne) 
– short spatial scales (mm to cm) 

• SWs excited at the antenna or produced by FW/SW mixing at boundaries are implicated in 
many nonlinear RF-plasma-surface interactions. 
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Outline 

• Background 
• ICRF driven sheaths – fast time scale (RF) physics 
• RF-driven convection 
• Ponderomotive force 
• Scattering of RF by turbulence  
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ICRF sheaths form where plasma, RF and  
material surfaces coexist 

• Typically E||,RF is responsible for enhanced electron losses: an RF sheath builds 
up to preserve plasma quasi-neutrality … 
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• far field sheaths, on walls, limiters, 
other hardware,  

• not magnetically connected 
• E|| driven by propagating waves 
• FW → SW conversion 

• near field sheaths, on antenna 
surfaces 

• magnetically connected: field line 
• E|| driven directly J||,ant 

E⊥ 

E|| 

Kohno PoP 2015 



 
Basic sheath physics: the biased static sheath 

 • RF sheaths can typically reach up to 100’s V >>  3Te  ⇒  strong bias 
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• capacitor plate model 
• equalize i and e loss rates 
• electron confinement 

–  Φ > max(V) on plates 
• sheath width ∆ 
• ion acceleration 

– sputtering 
– sheath power 
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Physics of an RF sheath 

11 Lodestar 

 

ω t = π 
ω t = 0 

ω t = π /2 

x 

Φ 

+ + 

− − 

+Vrf 
~ −Vrf 

~ 

• rectification <Φ>t ~ Vrf 
– PMI 
– BC for turbulence 

• ions flow out at both ends 
– Psh ~ ZeVrf ne cs 

• electrons leave when V > 0 
• oscillating Jn and V ⇒ sheath 

impedance ~ V/Jn 
– BC for RF codes 

Butler; Chodura; Colas; D’Ippolito; Faudot; 
Gekelman; Godyak; Gunn; Hershowitz; Hosea; 
Jacquot; Lieberman; Myra; Perkins; Smithe; 
VanEester <Φ>t 



Sheath boundary conditions for RF simulations 

•  λde , ∆ ~ << λrf, Ln, a, R 
• collapse the sheath into a boundary 

condition using a sub-grid sheath 
model 
 

• replace EM BC Et  = 0 with 
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Sub-grid sheath model output:  
• a relation between the RF electric field and current at the sheath entrance 

=> surface sheath impedance zs  (a nonlinear function of RF amplitude) 
• the rectified DC voltage <Φ>t  

=> coupling to sputtering (PMI), transport and (low frequency) turbulence  
      codes; sheath power dissipation the surface 
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• Use <Φ>t from the RF simulation directly as a BC, or 
• Modify the BC relation between J|| and Φ at the sheath entrance 
• Thermal sheath 

 
 
• Sheath potential modified by RF 

 
 

• Complication: <Φ>t from the RF code depends on J|| which depends on 
global current flow in the vessel walls (work in progress). 

Sheath BC for turbulence and transport codes 
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where <Φ>t  is from RF code 
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Outline 

• Background 
• ICRF driven sheaths 
• RF-driven convection – effect of RF sheaths on slow time scale physics 
• Ponderomotive force 
• Scattering of RF by turbulence  
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RF-driven E×B convection 
• Antenna and wall surfaces are geometrically complicated 
• Complex voltage patterns exist on these surface sheaths 

 
 
 

 
 

 
• Surface (sheath) potentials spread quickly along field lines 

– Parallel electron conduction 
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CAD model of 
C-Mod field 

aligned antenna 
F C-Mod vessel 

wall  



… RF-driven E×B convection 
• Flux tubes each charge to ~ independent potentials 
• Resulting <E⊥>t  drives convection and influences transport 
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• Simplified 1D picture 
that in reality is 
modified by: 
– parallel resistivity & 

<E||>t along tube 
– parallel currents 
– cross-field currents 

Φ1

Φ2B

E



RF-induced convection effects seen and modeled in experiments 

17 Lodestar 

reverses 
with B Tore Supra, Colas 2005; 

Bécoulet 2002 TFTR; D’Ippolito 1998 
Wilgen - reflectometer 

Local density at the antenna is modified by convection 
(and possibly ponderomotive effects). 

Large scale convection: 
pattern reversal with B 

Small scale (FS) convection: 
local flattening if τeddy <  L||/cs 

FS 



Advanced modeling requires 3D transport codes 
• Axisymmetric flows interesting for flow shear and turbulence interaction 
• Modeling of RF-driven convective transport will require non-axisymmetric 

(toroidally varying) BCs;  and E×B drifts 
• Important to understanding 

ne near the antenna and in the 
SOL 

– ICRF antenna wave coupling 
improves with higher ne (good) 

– RF sheath power dissipation 
and surface heat flux increases  
with ne (bad) 
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Work planned/underway in RF SciDAC 



RF driven <E>t×B flows also interact with turbulence 

• Lowest order sheath potentials are constant on a field 
line ⇒ jump discontinuity, but … 

• Plasma will not tolerate arbitrarily large <E⊥> and 
flow shear 
• Cross-field ion-polarization currents, Kelvin-

Helmholtz instabilities, mixing ⇒ effectivwe 
turbulent ⊥ conductivity 

• May control inward radial penetration of surface 
potentials [Tamain 2017; Gui 2018] 
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large <Φ> 

small <Φ> 

Gui NF 2018 (BOUT++ transport) 

Biased 
limiter 

RF 
no sheath 

Er 



Outline 

• Background 
• ICRF driven sheaths 
• RF-driven convection 
• Ponderomotive force – time averaged force from an RF wave 
• Scattering of RF by turbulence  
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Single particle ponderomotive potential 
[Motz & Watson 1967;  Kaufman ,Cary, Hammer, …] 
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~ jitter kinetic energy 

electrons 

•  ψp can be significant for the slow wave (SW) polarization: E|| and (because it 
is slow) large E⊥ for a given power density 

– near an ICRF antenna 
– in the core from ICW or IBW or (directly launched or mode converted) 
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• Relevant for coupling for transport and fluid turbulence codes 
 

                                              
  

 Πrf  is important (contains Reynolds stress + …) 
 

• For cold-fluid RF plasma responses:  using                           and FL 

Ponderomotive force density on a fluid element 
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Lee and Parks PF 1983:  

ψp has same structure as 
 n × single particle force 

M is analogous to  
diamagnetic force (drift) 
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Parallel ponderomotive force may contribute to pump-out 
(together with RF induced-convection) 

• Important when intense E|| is present from the RF slow wave 
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RF SciDAC project: tools for RF ↔ turbulence & transport 

• VSIM/VORPAL [Tech-X] computes EM fields and plasma current J near 
antenna retaining essentially full geometric details.  

• RF code Petra-M is also under development for this purpose. 
• Ponderomotive force can be expressed as F(E, J) and directly post-

processed, along with Φsheath, for passing to turbulence and transport codes 
– pump-out and changes in density profile near antenna ⇒ antenna loading 
– competition with sheath-driven convection and particle sources 
– perpendicular ponderomotive force and drifts 
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A. Dimits – next talk 
M. Umansky;  S. Shiraiwa (priv. communications) 
D. Smithe – ponderomotive, later talk this session 



Kinetic RF theory of force on a fluid element 
• Conditions for fluid limit of ponderomotive force can be violated (esp. in core) 

– e.g. parallel electron motion: πvte/L|| ~ ω; ions for ω ≈ nΩi 
• Can we drive sheared flows by RF to suppress turbulence? 

– confinement improvement observed in some IBW experiments [198x – 199x] 
– theoretical development of RF driven flows [1990x – 200x] 

• Experiments [Lin 2008; 2012] showed flow drive from FW mode conversion to 
IBW/ICW 

• Cold fluid ponderomotive force cannot drive flux-surface averaged flows 
• proof uses n = n(ψ), <Reζ⋅∇ Q>ψ = 0, <B∇|| Q>ψ = 0, and ∇×M identities 

 
 

• Flux-surface averaged flows result from dissipative terms in kinetic theory 
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3 mechanisms for RF-induced wave forces on a plasma  
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i) photon absorption  
dissipative forces 

ii) photon reflection,  
    reactive ponderomotive forces 

k, ω 
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Theory/simulations have not yet quantitatively explained MC flow drive in  
experiments: possible coupling to turbulent transport? 

iii) momentum redistribution 
    (bipolar flows), Reynold’s Stress 
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Outline 

• Background 
• ICRF driven sheaths 
• RF-driven convection 
• Ponderomotive force 
• Scattering of RF by turbulence  
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RF waves must traverse the turbulent SOL and edge region 
on their way to the core 

• Potentially important for (ICRF), LH and EC 
• RF sees a frozen snapshot of the turbulence 
• In the edge: δn/n << 1, background + turbulent wave spectrum  

[Bonoli; Ram; Hizanidis …] 

 ωscattered = ωincident                               kscattered = kincident + kturbulence 
– refractive effects if kturbulence  << krf   (short wavelength rf) 
– changes: propagation direction and wavenumber 

• affects absorption location and accessibility (through dispersion relation) 
– ray tracing, wave-kinetic equation, FP equation 

• In the SOL: δn/n ~ 1, blobs [Ram; Myra; Ioannidis; Chellaï; Biswas; Lau] 
– diffraction if kturbulence  ≥ krf  (comparable/long wavelength rf) 
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Scattering by a single blob-filament 

• SW scattering resonance for zb = k⊥rb ~ 1 
– SW wavelength fits inside blob-

filament 
– approximate “bound state” exists when 

radiation damping of scattered wave is 
small (long wavelength in background 
plasma) 

• Bound state condition is also postulated to 
result in FW →  SW mode conversion in the 
SOL 

– may be relevant to observed edge power loss 
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Myra 2010 

Re Ez field pattern

inc

z = 0.1, zb = 2.395



Pz 

… Scattering by many blob-filaments 

• Extended to multiple filaments and realistic launcher fields and geometry 
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• Back- and side-scattering of 
slow LH waves, and changes 
in the spatial distribution of 
Poynting flux; and the 
spectrum  

• RF SciDAC project is preparing to exchange high resolution data between 
turbulence/transport and RF codes: enable predictive calculations 

Ioannidis PoP 2017 



ICRF propagation in an under-dense SOL 
• FW that is desired in the core for heating and CD  is evanescent in the SOL if ne < nec 

⇒ degraded coupling; antenna is far away from separatrix in ITER 
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Needed : a predictive characterization of SOL packing fraction 

• FW decays through tenuous (under-
dense) background but could see 
regions of propagation (high density 
blob-filaments). 

• Result is not equivalent to using the 
average density 

– It is similar to using the average 
decay rate  [Myra 2014] 

2D blob-lattice model 

packing fraction =  
over-dense volume 

total volume 
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Summary 
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<RF>t 

turbulence 
RF-sheath-driven flows; 
shear suppression , KH?, 

ponderomotive flows 
(edge, core?) 

 
transport 

sheath BC 
convective cells 

pump-out 
 

PMI 
RF-enhanced sheaths: 

• sputtering 
• power deposition 

RF ~ ωt 

no
nl
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sheaths, ponderomotive 

antenna coupling, scattering 

convection, expulsion 

SOL-antenna profiles, 
refraction, diffraction, k-spectrum 
blob-filaments: 
scattering & under-dense decay 

RF sheath 
impedance 

SW: E|| 
large E⊥  



Extras 
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Parametric decay instability (PDI)  often observed 

• Parametric decay spectra are 
frequency observed with 
probes, especially associated 
with a launched SW (pump); 
in ICRF and LH regimes 

• Difficult to assess fraction of 
power lost t PDI from point 
measurements 

• PDI thought to be important 
in explaining loss of LH 
efficiency at high ne 
[Porkolab, …] 

pump 

DIII-D, Pinsker 1993 
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Physics of parametric decay 

• for fixed pump E(ω0) and E(ω), E(ω−) small 
– linearly unstable above threshold |E0|2 > γγ- 

• dipole approx: long wave pump 
– linear theory about oscillating equilibrium 
– species dependent jitter in pump field ⇒ coupling 

 
 

pump: E(ω0) 

daughters:       E(ω−) E(ω) 
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Linear PDI theory (fixed pump) well developed 
• Porkolab 1990 
• Chiu 1988 
• convective, inhomogeneous 
• Cardinali NF 2002 

– ne high to reduce PDI 
– ne low for coupling (Prefl) 

Nonlinear pump depletion? 
 kinetic, hot plasma 
 time domain 
 2D or 3D spatial 
a difficult numerical problem 

Porkolab 1990 

IBW → IBW + quasi-mode 

36 Lodestar 



Simulations of sheared flows with AORSA 

• C-Mod case 
• Bθ controls MC products 
• k|| upshifts 
• ICW propagation into resonance 
• flows based on toroidal force balance 

with D ~ a2/τe 
• 1 MW power 

–  ωE×B = 1.2 × 104 /s 

Jaeger, 2003 
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Sub-grid nonlinear RF sheath model 

Equations 
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BCs 

Input Vpp 
Output Jx 
⇒ zsh 
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… Sheath BC for RF codes 
• zs from a fluid model has been tabulated/fit in a 4D parameter space  

– normalized density, magnetic field, magnetic field angle, RF voltage 
 
 
 
 
 
 

 
nonlinear dependence on RF amplitude requires iterative RF solves 

• sheath resistance, Re zs, ⇒  RF power dissipation in the sheath (surface 
heating) 
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Typical variation of zs  
• real at low frequency 
• imaginary at high frequency 
• structure at ion cyclotron and 

plasma frequencies 

Re z

Im z

Ωci ωpi



ICRF convective cells modeled in JET 

 D’Ippolito PoP 1993 
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FS separatrix 

local flattening when τeddy <  L||/cs 



• A new MFEM-based RF code Petra-M [Shiraiwa] has been employed to model 
sheaths in a proposed LAPD verification experiment 

• FW are launched from an antenna; propagate down the column and are incident on 
a plate angled at 45 deg. to B and the column axis 

• FW → SW polarization conversion occurs at the plate generating RF sheaths 

LAPD simulation and verification 
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Wright, Shiraiwa, Myra  

ne

|Vsh,rf| (V)
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