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Outline
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 Equations & boundary conditions
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 Edge turbulence simulations of H-mode on EAST 
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Outline

◼ Introduction of 6-field 2-fluid model 
◼ Applications for divertor simulations
 Transient heat flux simulations during ELM bursts on DIII-D
◆ Kinetic modification on thermal conduction in pedestal
◆ Validation with experiments
◆ Study on the effects of magnetic flutter in parallel 

conduction
 Transient particle flux simulations during ELM bursts on 

EAST 
 Summary for divertor simulations

◼ Demo for running 6-field



Six-field two-fluid model is necessary to describe:
▪ pedestal energy loss 
▪ density profile evolution through the ELM event, 
▪ heat flux 
▪ energy depositions on divertor target
▪ Edge turbulence

Six-field (ϖ, ni, Ti, Te, A||, V||): based on Braginskii equations, the 
density, momentum and energy of ions and electrons are 
described in drift ordering[1,2]. 

[1]X. Q. Xu et al., Commun. Comput. Phys. 4, 949 (2008).
[2]T. Y. Xia et al., Nucl. Fusion 53, 073009 (2013).

Multi-field two-fluid model in BOUT++Multi-field two-fluid model in BOUT++



Equations of 6-field 2-fluid model
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Compressible terms

Parallel velocity 
terms

Electron Hall 

Thermal force

Gyro-viscosity 

Energy exchange 

Energy flux

Thermal conduction
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Boundary conditions and normalizations

Boundary conditions:
Inner boundary:

Outer boundary:

Sheath boundary conditions on the divertors

Normalizations:



The physics switches of 6-field model in BOUT++
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Switch Name Physics meanings

compress0 Parallel velocity

continuity Compressible terms

eHall Electron Hall effects

energy_flux Energy flux terms

energy_exch Energy exchange terms

thermal_force Thermal force terms

gyro_viscous Gyro-viscosity

viscos_par Parallel viscosity

spitzer_resist Spitzer resistivity

hyperresist Hyper resistivity

diffusion_par Thermal conduction

experimental_Er Using diagnostic Er

Neoclassic_i/e Neoclassical transport for ion/electron

Gamma_i/e_BC Sheath boundary for ion/electron



3-field  2-fluid model is good enough to simulate P-B stability 

and ELM crashes, additional physics from multi-field contributes 

less than 25% corrections

Power depositions 

on PFCs.

Turbulence and 
transport
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➢ Fundamental physics in ELMs: 
✓ Peeling-Ballooning instability
✓ Ion diamagnetic stabilization 

→ kinetic effect
✓ Resistivity and hyper-resistivity 

→ reconnection

➢ Additional physics:
• Ion acoustic waves
• Thermal conductivities
• Hall effect
• Compressibility
• Electron-ion friction

change the linear 
growth rate less 
than 25%
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Benchmark with ELITE and 3-field mode in 
BOUT++

For a typical peeling-ballooning mode 
unstable equilibrium:
➢ Ideal MHD, the growth rate is 

consistent with ELITE.
➢ Full 6-field mode gives smaller 

growthrate than ideal MHD, mostly 
due to FLR effects. 

➢ Higher than 3-field model w/ 
diamagnetic effects, most due to 
electromagnetic drift wave instability 

2. JET-like stronger P-B unstable1. JET-like weaker P-B unstable



Flux limiting coefficients describe the kinetic modification 
to Spitzer-Harm-Braginskii thermal conduction
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αj
❑ Flux limiting coefficient αj represents the ratio of the 

Spitzer-Harm-Braginskii expression for parallel heat flux 
vs. free streaming flux. 

❑ The typical range of αj is [0.03, 3.0]*

* P.W. Fundamenski, Plasma Phys. Controlled Fusion 47, R163 (2005).
** *M.E.Fenstermacher, et al. 40th EPS Conference on Plasma Physics, P4.104.

❑ For DIIID #144382, κ||j are dominated by the flux 
limited expression because of low collisionality, 
especially inside the separatrix.
νe*=0.127            at ψN=0.8
νe*=1.616            at pressure gradient peak

❑ The simulated ELM size under sheath limit parallel 
conduction with αi=0.05 is around 2.2%, which is 
very close to the experimental measurement with 
2%**.

❑ How to determine the value of αj:
➢ The free streaming limit:

➢ The sheath limit:         
-- should be chosen for divertor simulations                                                        



Multi-field two-fluid model in BOUT++The magnetic flutter enhance radial transport, 
then leads to larger Energy loss and heat flux

➢ More energy loss is due to magnetic flutter. 
➢ SBCs slightly increase the ELM size
➢ At the linear phase, the growing of the 

perturbation is enhanced by flutter

➢ Wider spreading of heat flux to targets, but larger peak value by flutter.
➢ Radial transport is enhanced by flutter. SBCs does not change it obviously. 11

w/SBC w/flutter

w/SBC w/o flutter

w/o SBC w/o flutt er

w/SBC w/flutter

w/SBC w/o flutter

w/o SBC w/o flutt er

w/SBC w/flutter

w/SBC w/o flutter

w/o SBC w/o flutt er



The comparison of the heat flux profiles between 
simulations and measurements on DIII-D
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Heat flux measured from experiments*.

➢ Heat fluxes from simulations show the 
comparable expansion on targets. 

➢ Compared to the measurement, the 
amplitude is 2x times larger due to the lack of 
radiation and recombination by neutrals and 
impurities.

*M.E.Fenstermacher, et al. 40th EPS Conference on Plasma Physics, P4.104.

Due to reflections in the IRTV, which 
have been significantly reduced in the 
2013 DIII-D campaign.
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The validations between BOUT++ and EAST 
experiments are also well agreeed

➢ The blob transport behavior is obtained 

➢ The BOUT++ simulations shows the 
similar amplitude and depositions with 
divertor probes.

➢ The width is a little narrow because of 
LHW.
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Outline

◼ Introduction of 6-field 2-fluid model
 Equations & boundary conditions
 Physics switches 
 Edge turbulence simulations of H-mode on EAST 
 Summary for divertor simulations

◼ Demo for running 6-field



The physics switches used for this hands-on exercise
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Switch Name Physics meanings

compress0 Parallel velocity

continuity Compressible terms

eHall Electron Hall effects

energy_flux Energy flux terms

energy_exch Energy exchange terms

thermal_force Thermal force terms

gyro_viscous Gyro-viscosity

viscos_par Parallel viscosity

spitzer_resist Spitzer resistivity

hyperresist Hyper resistivity

diffusion_par Thermal conduction

experimental_Er Using diagnostic Er

Neoclassic_i/e Neoclassical transport for ion/electron

Gamma_i/e_BC Sheath boundary for ion/electron
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Density profile as the input

Density profile used in 6-field model:

The coefficients in BOUT.inp:
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Compiling and running of 6-field module 

Compiling:
> vi makefile

SOURCEC         = elm_6f.cxx
-> = 6f_landau.cxx

> make
Go to the scratch directory to run the code:
> cd $SCRATCH 
> cd –r ~/BOUT++/merge-
github/examples/6f_landau/ .
> cp ~/BOUT++/merge-
github/examples/6f_landau/6field-simple/* .
> cp
$SCRATCH/Transport_Code/code/job_submit_job
.sh . Variables after the collecting

For the exercise, a simple linear test is prepared:

Data post-processing:
Add the idl library directory first
IDL> !path=!path+":$BOUT_TOP/tools/idllib”
IDL> @collect-all

Submit job and run the job:
➢ vi job_submit.sh

srun -n 64 ./trans_er_Nn -d data
-> srun -n 64 ./6f_landau -d data

➢ sbatch submit_job.sh
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Before exercise: download transport code

➢ Download the transport code

$ cd $SCRATCH/

$ cp -r ~train38/PUBLIC/BOUT++_Workshop_2018/Transport_Code ./

$ cd Transport_Code/code
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The output of the mode structure (1)

ni Ti

Te Vi||

Linear growth rate and radial 
mode structures

Poloidal mode structures

>cp BOUT.inp data/.

n0_height = 0.0
n0_ave = 2

Linear growth rate for this test case:
IDL> print,gr[-1]

0.248578
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The output of the mode structure (3)

Linear growth rate and radial 
mode structures

Poloidal mode structures

ni Ti

Te Vi||

n0_height = 0.9
n0_ave = 2

Linear growth rate for this test case:
IDL> print,gr[-1]

0.226131
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The output of the mode structure (2)

ni Ti

Te Vi||

Linear growth rate and radial 
mode structures

Poloidal mode structures

n0_height = 1.2
n0_ave = 2

Linear growth rate for this test case:
IDL> print,gr[-1]

0.219981
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Examples for an X-point geometry

Linear growth rate and radial 
mode structures

Poloidal mode structures

cp $BOUT_TOP/examples/6f_landau/6field-
simple/east077741.03500_psi080to105_x260
y64.nc .
In BOUT.inp
grid=“east077741.03500_psi080to105_x260y
64.nc”
NXPE = 4
n0_height = 0.0
n0_ave = 0.2
Linear growth rate for this test case:
IDL> print,gr[-1]

0.154437

ni Ti

Te Vi||
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Examples for an X-point geometry

Linear growth rate and radial 
mode structures

Poloidal mode structures

In BOUT.inp
grid=“east077741.03500_psi080to105_x260y
64.nc”
NXPE = 4
n0_height = 0.0
n0_ave = 0.2

Linear growth rate for this test case:
IDL> print,gr[-1]

0.154437

ni Ti

Te Vi||
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Backup slides



25

Examples with measured density profiles

Linear growth rate and radial 
mode structures

Poloidal mode structures

In BOUT.inp
n0_fake_prof = false

Linear growth rate for this test case:
IDL> plot,rmsp[xx,yy,*]

The mode does not grow!

ni Ti

Te Vi||



Multi-field two-fluid model in BOUT++
The background impurity can be taken into 
account in order to use full set of measured 

profiles
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The vorticity equation with background impurity is modified to 

The effects of impurity: all the terms are at 
the order of mimnim

Gyro-viscous

Quasi-neutral condition
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Nonlinear comparison with 3-field model

➢ For weaker P-B unstable equilibrium (1), both three-field and six-field models show the 
consistent results at linear and nonlinear phases. 

➢ In stronger P-B unstable equilibrium (2), while additional terms of six-field do enhance 
the instability. 

➢ The six-field model yields smaller ELM size than 3-field model in both equilibria.



Multi-field two-fluid model in BOUT++The magnetic flutter enhance radial transport

ion

electron
➢ Radial particle flux and heat fluxes are all 

enhanced by magnetic flutter
➢ More effective on ion heat flux than electron.
➢ The effects of magnetic flutter are mainly on 

the ExB induced fluxes
➢ The non-consistent calculation of conductive 

fluxes are similar to the consistent one, 
especially near the separatrix. 
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Simulations show the filaments of ELMs and heat 
load strips on targets
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