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Outline

§ Overview of SUNDIALS packages

§ Recent additions 

— CUDA and Raja vectors, fused vector operations

— Revised linear solver API 

§ Current development

— MPI+X and OpenMP 4.5 vectors

— Nonlinear solver API

— Multirate methods

§ Future plans

— Many-vector API 

— Parallel in Time
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SUNDIALS: Suite of Nonlinear and Differential-
Algebraic equation Solvers
§ Suite of ODE and DAE time integrators and nonlinear solvers

— Adaptive integrators with forward an adjoint sensitivity capabilities
— Written in C with interfaces to Fortran
— Designed to be incorporated into existing codes

§ Modular implementation
— Packages are built on shared vector, matrix, linear solver, preconditioner, 

and soon nonlinear solver APIs
— Users can supply their own data structures/modules or use SUNDIALS 

provided versions 

§ Packages
— ODEs: CVODE1,3, CVODES2, ARKode1,3

— DAEs: IDA1,3, IDAS2

— Nonlinear Systems: KINSOL3

1 Rootfinding capabilities
2 Forward and adjoint
sensitivity analysis capabilities
3 Fortran interfaces
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SUNDIALS: Suite of Nonlinear and Differential-
Algebraic equation Solvers
§ Use and support

— Used in application codes worldwide
— More than 17,000 downloads in 2017
— Extensive user documentation
— User support email list, archive at nabble.com

§ Freely available under BSD license
— SUNDIALS webpage 

https://computation.llnl.gov/projects/sundials
— GitHub

https://github.com/LLNL/sundials
— Spack

https://github.com/spack/spack

Core collapse
supernovae

Atmospheric Dynamics

Dislocation 
Dynamics

Magnetic 
Reconnection

https://computation.llnl.gov/projects/sundials
https://github.com/LLNL/sundials
https://github.com/spack/spack
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CVODE(S) and IDA(S): Adaptive step and order 
multistep integration methods
§ CVODE solves 

§ IDA solves   
— Targets: implicit ODEs, index-1 DAEs, and Hessenberg index-2 DAEs
— Optional routines solve for consistent initial values for some cases

§ Adaptive order and step linear multistep methods

§ Both packages include BDF methods for stiff systems

§ CVODE includes Adams-Moulton methods for non-stiff systems

§ CVODES and IDAS include forward and adjoint sensitivity 
analysis capabilities (user supplies the adjoint operator)

Chapter 2

Mathematical Considerations

cvode solves ODE initial value problems (IVPs) in real N -space, which we write in the abstract form

ẏ = f(t, y) , y(t0) = y0 , (2.1)

where y ∈ RN . Here we use ẏ to denote dy/dt. While we use t to denote the independent variable, and
usually this is time, it certainly need not be. cvode solves both stiff and nonstiff systems. Roughly
speaking, stiffness is characterized by the presence of at least one rapidly damped mode, whose time
constant is small compared to the time scale of the solution itself.

2.1 IVP solution

The methods used in cvode are variable-order, variable-step multistep methods, based on formulas
of the form

K1
∑

i=0

αn,iy
n−i + hn

K2
∑

i=0

βn,iẏ
n−i = 0 . (2.2)

Here the yn are computed approximations to y(tn), and hn = tn − tn−1 is the step size. The user
of cvode must choose appropriately one of two multistep methods. For nonstiff problems, cvode

includes the Adams-Moulton formulas , characterized by K1 = 1 and K2 = q above, where the order
q varies between 1 and 12. For stiff problems, cvode includes the Backward Differentiation Formulas
(BDFs) in so-called fixed-leading coefficient form, given by K1 = q and K2 = 0, with order q varying
between 1 and 5. The coefficients are uniquely determined by the method type, its order, the recent
history of the step sizes, and the normalization αn,0 = −1. See [6] and [21].

For either choice of formula, the nonlinear system

G(yn) ≡ yn − hnβn,0f(tn, yn) − an = 0 , (2.3)

where an ≡
∑

i>0(αn,iyn−i + hnβn,iẏn−i), must be solved (approximately) at each integration step.
For this, cvode offers the choice of either functional iteration, suitable only for nonstiff systems, and
various versions of Newton iteration. Functional iteration, given by

yn(m+1) = hnβn,0f(tn, yn(m)) + an ,

involves evaluations of f only. In contrast, Newton iteration requires the solution of linear systems

M [yn(m+1) − yn(m)] = −G(yn(m)) , (2.4)

in which
M ≈ I − γJ , J = ∂f/∂y , and γ = hnβn,0 . (2.5)

The initial guess for the iteration is a predicted value yn(0) computed explicitly from the available
history data.
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ẏ = f(t, y) , y(t0) = y0 , (2.1)
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i>0(αn,iyn−i + hnβn,iẏn−i), must be solved (approximately) at each integration step.
For this, cvode offers the choice of either functional iteration, suitable only for nonstiff systems, and
various versions of Newton iteration. Functional iteration, given by

yn(m+1) = hnβn,0f(tn, yn(m)) + an ,

involves evaluations of f only. In contrast, Newton iteration requires the solution of linear systems

M [yn(m+1) − yn(m)] = −G(yn(m)) , (2.4)

in which
M ≈ I − γJ , J = ∂f/∂y , and γ = hnβn,0 . (2.5)

The initial guess for the iteration is a predicted value yn(0) computed explicitly from the available
history data.

Chapter 2

Mathematical Considerations

idas solves the initial-value problem (IVP) for a DAE system of the general form

F (t, y, ẏ) = 0 , y(t0) = y0 , ẏ(t0) = ẏ0 , (2.1)

where y, ẏ, and F are vectors in RN , t is the independent variable, ẏ = dy/dt, and initial values y0,
ẏ0 are given. (Often t is time, but it certainly need not be.)

Additionally, if (2.1) depends on some parameters p ∈ RNp , i.e.

F (t, y, ẏ, p) = 0

y(t0) = y0(p) , ẏ(t0) = ẏ0(p) ,
(2.2)

idas can also compute first order derivative information, performing either forward sensitivity analysis
or adjoint sensitivity analysis. In the first case, idas computes the sensitivities of the solution with
respect to the parameters p, while in the second case, idas computes the gradient of a derived function
with respect to the parameters p.

2.1 IVP solution

Prior to integrating a DAE initial-value problem, an important requirement is that the pair of vectors
y0 and ẏ0 are both initialized to satisfy the DAE residual F (t0, y0, ẏ0) = 0. For a class of problems that
includes so-called semi-explicit index-one systems, idas provides a routine that computes consistent
initial conditions from a user’s initial guess [6]. For this, the user must identify sub-vectors of y (not
necessarily contiguous), denoted yd and ya, which are its differential and algebraic parts, respectively,
such that F depends on ẏd but not on any components of ẏa. The assumption that the system is
“index one” means that for a given t and yd, the system F (t, y, ẏ) = 0 defines ya uniquely. In this
case, a solver within idas computes ya and ẏd at t = t0, given yd and an initial guess for ya. A
second available option with this solver also computes all of y(t0) given ẏ(t0); this is intended mainly
for quasi-steady-state problems, where ẏ(t0) = 0 is given. In both cases, idas solves the system
F (t0, y0, ẏ0) = 0 for the unknown components of y0 and ẏ0, using Newton iteration augmented with
a line search global strategy. In doing this, it makes use of the existing machinery that is to be used
for solving the linear systems during the integration, in combination with certain tricks involving the
step size (which is set artificially for this calculation). For problems that do not fall into either of
these categories, the user is responsible for passing consistent values, or risks failure in the numerical
integration.

The integration method used in idas is the variable-order, variable-coefficient BDF (Backward
Differentiation Formula), in fixed-leading-coefficient form [3]. The method order ranges from 1 to 5,
with the BDF of order q given by the multistep formula

q
∑

i=0

αn,iyn−i = hnẏn , (2.3)
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ARKode: Adaptive step Runge-Kutta integration 
methods for ODEs
§ ARKode solves 

— is any nonsingular linear operator (mass matrix, typically                )
— contains explicit terms and                 implicit terms

§ Adaptive multistage additive Runge-Kutta methods

§ ARKode includes adaptive explicit (ERK), implicit (DIRK), and 
IMEX (DIRK+ERK) methods, methods may also be user supplied

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions

2-Additive Runge-Kutta Methods [Ascher et al. 1997; Araújo et al. 1997; . . . ]

ARKode employs an additive Runge-Kutta formulation, supporting up to two split
components: explicit and implicit,

Mẏ = f
E(t, y) + f

I(t, y), t 2 [t0, tf ], y(0) = y0,

M = M(t) is any nonsingular linear operator (mass matrix, typically M = I),

f
E(t, y) contains the explicit terms,

f
I(t, y) contains the implicit terms.

We combine two s-stage methods; denoting e.g. tEn,j = tn + c
E
j hn, hn = tn+1 � tn:

Mzi = Myn + hn

i�1X

j=1

A
E
i,jf

E(tEn,j , zj) + hn

iX

j=1

A
I
i,jf

I(tIn,j , zj), i = 1, . . . , s,

Myn+1 = Myn + hn

sX

j=1

h
b
E
j f

E(tEn,j , zj) + b
I
jf

I(tIn,j , zj)
i

(solution)

Mỹn+1 = Myn + hn

sX

j=1

h
b̃
E
j f

E(tEn,j , zj) + b̃
I
jf

I(tIn,j , zj)
i

(embedding)
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ARKode employs an additive Runge-Kutta formulation, supporting up to two split
components: explicit and implicit,
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ARKode Flexibility Enhancements

§ Variety of built-in Runge-Kutta methods; supports user-supplied

— ERK order 3 – 8 

— DIRK order 2 – 5 

— ARK order 3 – 5 

§ Variety of built-in adaptivity functions; supports user-supplied

§ Variety of built-in implicit predictor algorithms

§ Ability to specify a problem is linearly implicit

§ Ability to resize data structures based on changing problem size 

(e.g., adaptive mesh refinement)

§ Set routines for internal package parameters
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Time steps are selected to minimize local 
truncation error and maximize efficiency
§ Time step selection 

— Based on the method, estimate the time step error

— Accept the step if                                   ; otherwise reject the step

— Choose the next step      so that 
— CVODE(S) and IDA(S) will also choose the method order for the next step that 

has the largest step that meets the error condition

§ Relative tolerance controls error relative to the size of the solution; 
rtol = 1e-4 means that errors are controlled to 0.01%

§ Absolute tolerances control error when a solution may be small
— e.g. solution starting at a nonzero value but decaying to a noise level, atol

should bet set to the noise level

~cI AI

~bI

~̃bI
=

cI1 aI1,1 0 0 · · · 0
cI2 aI2,1 aI2,2 0 · · · 0
cI3 aI3,1 aI3,2 aI3,3 · · · 0
...

...
. . . 0

cIs aIs,1 aIs,2 · · · aIs,s�1 aIs,s
bI1 bI2 · · · bIs�1 bIs
b̃I1 b̃I2 · · · b̃Is�1 b̃Is

. (12)

8 Other

kLTE(hn)kwrms < 1 (13)

4

~cI AI

~bI

~̃bI
=

cI1 aI1,1 0 0 · · · 0
cI2 aI2,1 aI2,2 0 · · · 0
cI3 aI3,1 aI3,2 aI3,3 · · · 0
...

...
. . . 0

cIs aIs,1 aIs,2 · · · aIs,s�1 aIs,s
bI1 bI2 · · · bIs�1 bIs
b̃I1 b̃I2 · · · b̃Is�1 b̃Is

. (12)

8 Other

kLTE(hn)kwrms < 1 (13)

kykwrms =

vuut 1

N

NX

i=1

(wiyi)2 (14)

wi =
1

rtol|yi|+ atoli
(15)

4

~cI AI

~bI

~̃bI
=

cI1 aI1,1 0 0 · · · 0
cI2 aI2,1 aI2,2 0 · · · 0
cI3 aI3,1 aI3,2 aI3,3 · · · 0
...

...
. . . 0

cIs aIs,1 aIs,2 · · · aIs,s�1 aIs,s
bI1 bI2 · · · bIs�1 bIs
b̃I1 b̃I2 · · · b̃Is�1 b̃Is

. (12)

8 Other

kLTE(hn)kwrms < 1 (13)

kykwrms =

vuut 1

N

NX

i=1

(wiyi)2 (14)

wi =
1

rtol|yi|+ atoli
(15)

4

~cI AI

~bI

~̃bI
=

cI1 aI1,1 0 0 · · · 0
cI2 aI2,1 aI2,2 0 · · · 0
cI3 aI3,1 aI3,2 aI3,3 · · · 0
...

...
. . . 0

cIs aIs,1 aIs,2 · · · aIs,s�1 aIs,s
bI1 bI2 · · · bIs�1 bIs
b̃I1 b̃I2 · · · b̃Is�1 b̃Is

. (12)

8 Other

kLTE(hn)kwrms < 1 (13)

kLTE(h0
n)kwrms < 1 (14)

kykwrms =

vuut 1

N

NX

i=1

(wiyi)2 (15)

wi =
1

rtol|yi|+ atoli
(16)

4

~cI AI

~bI

~̃bI
=

cI1 aI1,1 0 0 · · · 0
cI2 aI2,1 aI2,2 0 · · · 0
cI3 aI3,1 aI3,2 aI3,3 · · · 0
...

...
. . . 0

cIs aIs,1 aIs,2 · · · aIs,s�1 aIs,s
bI1 bI2 · · · bIs�1 bIs
b̃I1 b̃I2 · · · b̃Is�1 b̃Is

. (12)

8 Other

kLTE(hn)kwrms < 1 (13)

kLTE(h0
n)kwrms < 1 (14)

kykwrms =

vuut 1

N

NX

i=1

(wiyi)2 (15)

wi =
1

rtol|yi|+ atoli
(16)

4



9
LLNL-PRES-756675

KINSOL: Solvers for systems of nonlinear 
algebraic equations
§ Newton iterations for solving                     

— Computing iteration updates requires solving the linear system  

— Direct solvers: modified Newton, Jacobian matrix is normally out of date
— Iterative solvers: inexact Newton, linear system is solved approximately

§ Dynamic linear tolerance selection with iterative linear solvers

§ Backtracking and line search options for robustness

§ Can separately scale equations and/or unknowns
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KINSOL: Solvers for systems of nonlinear 
algebraic equations
§ KINSOL also includes Picard and fixed point iterations

§ For the Picard iteration we consider  

this like Newton with     approximating 

§ Fixed point iteration does not require derivative information

§ Both the Picard and fixed point iterations can utilized Anderson 
acceleration to increase the convergence rate
— Requires the solution of a least squares problem the size of the number 

of prior residuals (not unknowns) each iteration
— Least squares problem can be solved very efficiently
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Flexible Design and Data Structures

§ SUNDIALS packages are data structure agnostic
— As long as basic vector kernels are supplied SUNDIALS packages will work 

with your native data structures
— NVector API for vector operations
— SUNMatrix API for matrix operations (if needed)

§ SUNDIALS packages are built on shared solver APIs
— SUNLinearSolver API for linear solvers
— SUNNonlinearSolver API for nonlinear solvers (in development)

§ Users can supply their own modules following the APIs or use 
implementations provided with SUNDIALS
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NVector API

§ A content structure specifies data 
and info to create new vectors

§ An operations structure holds 
pointers to vector operations on 
the vector content data

§ Routines to clone vectors for use 
within SUNDIALS

§ All parallelism resides in vector 
operations: dot products, norms, 
etc.

VECTOR MODULES

SERIAL PARALLEL 
(MPI)

PTHREADSOPENMP

CUDA RAJA

PARHYP 
(HYPRE) PETSC

NVECTOR API

NVector modules
provided with SUNDIALS
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GPU vectors for a single GPU device

§ NVector modules for use on GPU-based hardware

— CUDA

— RAJA hardware abstraction layer (https://software.llnl.gov/RAJA/) 

— OpenMP 4.5 (currently testing)

§ Integrator logic is executed on the host; launches vector kernels on device 

§ Create the vector on the CPU and immediately move data to the GPU and 

leave there for duration of run

§ Extra vector operations are provided to move data between GPU and CPU

§ Results show best performance is achieved when model evaluation and 

solver workspace (vectors) are both in device memory during computation

§ Users will need to write their problem-defining functions with CUDA, RAJA, 

or OpenMP 4.5+  to realize benefits

https://software.llnl.gov/RAJA/
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While these kernels are a start, we will need 
more sophisticated GPU-enabled vectors

§ Not reasonable to expect that all vector 
entries will fit in GPU memory at once

§ MPI+X vectors coming soon
— CUDA (currently testing)
— RAJA (currently testing)
— OpenMP 4.5 (future development)

§ Will need to enrich our user interface to 
include information on data layout

§ We are interfacing SUNDIALS with other 
LLNL codes (MFEM and hypre) and 
testing user API ideas

MPI+CUDA MPI+RAJA

MPI+OMP4.5

VECTOR MODULES

SERIAL PARALLEL 
(MPI)

PTHREADSOPENMP

CUDA RAJA

PARHYP 
(HYPRE) PETSC

NVECTOR API
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§ Fused operations to increase data reuse 
and reduce communication
— 9 new optional vector operations

§ Greatest benefits when using long vectors 
and when fusing removes communication

We added optional fused vector operations to 
the SUNDIALS vector API

Compute: z = c1 v1 + c2 v2 + …

LinearCombination
(n, C[0:n], V[0:n], z)

Unfused Fusedvs

Scale(0, z, z)

LinearSum(1, z, c1, v1, z) 

LinearSum(1, z, c2, v2, z)

LinearSum(1, z, cn, vn, z)

…
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SUNMatrix API

§ Used with direct linear solvers

§ Similar design to the NVector API
— content structure specifies data and info to 

create new matrices
— operations structure holds pointers to 

matrix operations on content data

§ Matrix Operations

MATRIX MODULES

SUNMATRIX API

DENSE

BAND

SPARSE

SUNMatrix modules 
provided with SUNDIALS

— GetID
— Clone
— Destroy
— Zero
— Copy

— ScaleAdd
— ScaleAddI
— Matvec
— Space
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SUNLinearSolver API

§ Redesigned linear solver API for 
better encapsulation
— Traded use of internal variables for 

accessor functions
— Provided package-specific wrappers 

for user-defined functions to give 
uniformity in solver interfaces

§ Direct and iterative linear solvers

§ Similar design to the NVector API
— content structure contains solver data
— operations structure holds pointers to 

linear solver operations

LINEAR SOLVER MODULES

ITERATIVE

SPTFQMR

SPBCG

SPFGMR

PCG

SPGMR

SUNLINEARSOLVER API

DIRECT
DENSE

SUPERLU_MT

BAND KLU

LAPACK 
DENSE

LAPACK 
BAND

SUNLinearSolver modules 
provided with SUNDIALS
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SUNLinearSolver Operations

• GetType – return linear solver type
• Initialize – initialize the linear solver object
• Setup – solver setup e.g., factorization or preconditioner update
• Solve – solve the linear system
• Free – deallocate solver memory
• SetATimes – set the Jacobian-vector product function (iterative)
• SetPreconditioner – set psetup and psolve functions (iterative)
• SetScalingVectors – set scaling vectors (iterative)
• SolNumIters – return the number of solver iterations (iterative)
• SolResNorm – return the residual norm from last solve (iterative)
• SolResid – return the initial residual vector (iterative)
• LastFlag – return last error flag encountered
• Space – return solver storage requirements
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We are providing linear solvers on new 
architectures through external libraries

TrilinosPETSc

hypreMAGMA

SuperLU_DIST

LINEAR SOLVER MODULES

ITERATIVE

SPTFQMR

SPBCG

SPFGMR

PCG

SPGMR

SUNLINEARSOLVER API

DIRECT
DENSE

SUPERLU_MT

BAND KLU

LAPACK 
DENSE

LAPACK 
BAND

§ New API eases interoperability with other 
packages
— SuperLU_Dist linear solver and matrix modules 

are in development
— Plan on adding additional modules in the future 

as part of the xSDK (https://xsdk.info/) 

§ Adding a matrix iterative linear solver type 
for iterative solvers that use matrix 
structures e.g., hypre (in development)

§ One challenge is that SUNDIALS uses scaled 
iterative solvers – best use of libraries may 
be for preconditioners to the SUNDIALS 
scaled Krylov methods

https://xsdk.info/
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SUNNonlinearSolver API

§ Encapsulating nonlinear solvers in 
time integration packages (in 
development)
— Uniformity in solver interfaces
— Allow for external or user supplied 

nonlinear solvers

§ Similar design to the NVector API
— content structure contains solver data
— operations structure holds pointers to 

nonlinear solver operations

§ Newton will become the default 
nonlinear solver in CVODE(S)

SUNNONLINEARSOLVER API

NONLINEAR SOLVER 
MODULES

FIXED POINT

NEWTON

SUNNonlinearSolver modules 
provided with SUNDIALS
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SUNNonlinearSolver Operations

• GetType – return linear solver type
• Initialize – initialize the nonlinear solver object
• Setup – solver setup called infrequently
• Solve – solve the nonlinear system
• Free – deallocate solver memory
• SetSysFn – set the function defining the nonlinear system
• SetLSetupFn – set integrator linear solver setup function
• SetLSolveFn – set integrator linear solver solve function
• SetConvTestFn – set the convergence test function
• GetNumIters – return the number of iterations
• GetCurIter – return the current iteration number
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We are investigating multirate integrators as an 
aid to applications coupling more physics

§ Applications are becoming more multiphysics, multiscale, and 
multirate as they take advantage of greater computing power

§ Multiphysics simulation challenges include:
— Multirate processes, but too close to analytically reformulate
— Optimal solvers may exist for some pieces, but not for the whole
— Mixing of stiff and nonstiff processes

§ Many commonly used schemes may suffer from low accuracy 
and poor/unknown stability.

§ Multirate methods evolve distinct problem components with 
their own rate-specific time steps
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Multirate integrators

§ Existing multirate approaches:
— O(h)-accurate subcycling
— Fast/slow coupling via interpolation (typically O(h2), sometimes O(h3))
— Extrapolation methods to “bootstrap” accuracy for low order methods 

§ New multirate methods should be:
— High-order accuracy and stability, both within an between components
— Flexible rate structure within integration
— Robust temporal error estimation and step size adaptivity
— Allow for problem-specific options (e.g., SSP or symplectic)

§ Currently implementing 4th order two-rate explicit/explicit methods 
in ARKode

§ Plan on adding two-rate IMEX and three-rate methods over the 
coming two years
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Multirate Infinitesimal Step (MIS) Methods

§ MIS/RFSMR is a highly efficient, up to O(h3) method used in 
numerical weather prediction [Knoth and Wolke 1998, Schlegel et al. 2009]

§ Fast terms                  and slow terms                 are separated by a 
factor 

§ The MIS derivation assumes:
— The slow component is integrated using an explicit “outer” Runge-Kutta

method                                   where 

— The fast component is advanced between slow stages as the exact 
solution of a modified ODE

§ Practically, the fast solution is subcycled using an “inner” 
Runge-Kutta method (any type) with table 

Motivation Current ARKode Methods (ImEx) ARKode API Upcoming ARKode Methods (Multirate) Conclusions
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MIS Properties

§ MIS methods have a number of desirable properties
— If both To and Ti are at least O(h2) then the MIS method is O(h2)

— If both To and Ti are at least O(h3) and To satisfies the condition

then the MIS method is O(h3).

§ When Ti is a subcycled version of To the method is telescopic 
(may be used recursively to support n-rate problems)

§ Ti and To can be problem-specific methods (SSP, symplectic, etc.)

§ m can be varried between steps to adapt to changing rates

§ Highly efficient – only a single traversal of the time interval is 
required to compute the solution
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MIS Method Properties

MIS methods satisfy a number of desirable multirate method properties:

If both To and Ti are at least O
�
h
2
�
then the MIS method is O

�
h
2
�
.

If both To and Ti are at least O
�
h
3
�
, and To satisfies

soX
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⇣
coj � coj�1

⌘
(ej + ej�1)

| Aoco +
�
1 � coso

�✓ 1

2
+ e|

soAoco
◆

=
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3
, (1)

then the MIS method is O
�
h
3
�
.

When Ti is a subcycled version of To the method is telescopic
(may be used recursively to support n-rate problems).

Ti and To can be problem-specific Butcher tableau (SSP, symplectic, . . . ).

m can be varied between steps to adapt with problem rate structure.

Highly e�cient – only a single traversal of [tn, tn + h] is required to obtain
yn+1. In previous tests, we could not find a more e�cient method.
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Relaxed Multirate Infinitesimal Step Methods

§ RMIS [Sexton & Reynolds, 2018] is nearly identical to MIS, only 
changing how the fast stages contribute to 

§ Inherits properties of MIS with minor changes:
— The first stage of Ti must be explicit (the rest can be anything)
— If both To and Ti are at least O(h3) then the RMIS method is O(h3)
— If Ti is at least O(h3), and if To is O(h4) and satisfies 

then the RMIS method is O(h4)

§ MIS can be used as an O(h3) embedding within O(h4) RIMS
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RMIS Method Properties

RMIS methods inherit properties of MIS, with minor changes:

The first stage of Ti must be explicit (but the rest can be anything).
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.

MIS can be used as an O
�
h
3
�
embedding within the O

�
h
4
�
RMIS method.
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Relaxed Multirate Infinitesimal Step Methods (RMIS) [Sexton & Reynolds 2018]

The RMIS algorithm is nearly identical to MIS, only changing how the fast
stages contribute to the time-evolved solution:

Set z{s}1 = yn.

For j = 2, . . . , so :

Solve v0j = f
{f}(t, vj) +

j�1X

k=1

ao
j,k�ao

j�1,k

coj�coj�1
f
{s}

⇣
tn + c

o
kh, z

{s}
k

⌘
,

where t 2 [tn + c
o
j�1h, tn + c

o
jh], with vj(tn + c

o
j�1h) = z

{s}
j�1.

Set z{s}j = vj(tn + c
o
jh).

Set yn+1 = yn + h

soX
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b
o
k

⇣
f
{s}

⇣
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o
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{s}
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⌘
+ f

{f}
⇣
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o
kh, z

{s}
k

⌘⌘
.
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RMIS Algorithm

§ Illustration of the coupling between the slow and fast stages and 
steps in a third-order two-rate explicit RIMS method

§ The most recent slow stage solution is held constant over the fast 
steps between the slow stages. 

§ Fast stage solutions are used to update the next slow stage value.

Slow

Fast
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RMIS Algorithm
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Relaxed Multirate Infinitesimal Step Methods (RMIS) [Sexton & Reynolds 2018]

The RMIS algorithm is nearly identical to MIS, only changing how the fast
stages contribute to the time-evolved solution:

Set z{s}1 = yn.

For j = 2, . . . , so :

Solve v0j = f
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Multirate Infinitesimal Step Methods [Knoth & Wolke 1998; Schlegel et al. 2009; . . . ]

MIS/RFSMR is a highly e�cient, up to O
�
h
3
�
method used in numerical weather

prediction. We consider 2-rate problems in additive form,

y
0(t) = f

{f}(t, y) + f
{s}(t, y), t 2 [t0, tf ], y(t0) = y0 2 Rn

,

f
{f}(t, y) contains the “fast” terms,

f
{s}(t, y) contains the “slow” terms,

the “slow” and “fast” time scales are separated by a factor m,

y may optionally be partitioned as well, e.g. y =
⇥
y
{f}

y
{s}⇤|

The MIS derivation assumes:

the slow component is integrated using an explicit “outer” RK method,
To = {A

o
, b

o
, c

o
}, where c

o
j  c

o
j+1, j = 1, . . . , so � 1.

the fast component is advanced between slow stages as the exact solution of a
modified ODE.

Practically, the fast solution is subcycled using an “inner” RK method (any type) with

table Ti.
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Multirate Summary

§ Enhancements to ARKode to support multirate methods

§ Addition of O(h3) and O(h4) multirate methods with a single 
traversal of the time interval

§ Initial version will assume two rates, both evolved explicitly with 
a user defined step size (h)

§ Follow on versions will support implicit methods for fast time 
scale, automated step size (h) and multirate (m) adaptivity

§ Exploring extensions to three rates and possibly more rates
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Many-vector API for multiphysics applications 
and heterogeneous architectures
§ Enabling many-vector data structures more readily for users

§ Left: Process-based multi-physics decompositions
— Comm1 connects processes 0 and 1 with physics operating on red/blue data, 
— Comm2 connects processes 2 and 3 with physics operating on green/magenta data,
— MPI intercommunicator allows multiphysics coupling

§ Right: multivector for multi-rate or data partitioning, allowing for each 
vector to utilize distinct processing elements

CPU CPU CPU
CPU

GPU
GPU

GPU

P0 P1 P2 P3

Comm

GPU

P0 P1 P2 P3

Comm2

Comm1

Intercommunicator
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§ We are considering multigrid reduction in time (MGRIT) with SUNDIALS 
integration technologies

§ Uses multiple coarse grids to update the original fine grid solution

§ The goal will be to enhance SUNDIALS with MGRIT capabilities for both BDF 
and RK packages

§ Looking at using MGRIT in SUNDIALS by interfacing with the XBraid package 
which implements the MGRIT algorithm as a nonintrusive black box

As total simulated time continues to grow, 
parallel in time methods may give speedup

t0 t1 t2 t3 …

T0 T1
…

dt

DT = mdt

tN

F-point

C-point

“XBraid: Parallel multigrid in time” http://llnl.gov/casc/xbraid
R. Falgout et al., “Parallel time integration with multigrid”

http://llnl.gov/casc/xbraid
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Results on a power grid test system based on the 
Western Interconnect show potential
§ See speedups with both implicit Runge-Kutta and BDF methods
§ Speedups can be attained with small core counts
§ Don’t see benefit with short time problems: Need enough steps 

for parallelization to be useful

Courtesy of C. Woodward (LLNL),  M. Lecouvez (CEA), J. Schroder (UNM), and  R. Falgout (LLNL)

IEEE 179 bus case
• 29 generators
• 793 unknowns
• DAE model
• Discontinuous 

change in load 
every second

• Coarsen order 
and grid 

Strong Scaling with BDF2 Strong Scaling with variable step RK4
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Summary

§ Recent additions:
— New GPU vectors (CUDA and RAJA); fused vector operations
— Redesigned linear solver interfaces for better encapsulation and easier 

interfacing with external solver libraries

§ Current work:
— Nonlinear solver API to allow for external solver options
— More vector options (OpenMP 4.5 and MPI+X)
— Interfaces to external linear solvers and preconditioners
— Multirate integration methods

§ Future plans:
— Enabling many-vector data structures more readily for users
— Parallel-in-time methods with MGRIT and XBraid
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