
1/36

BOUT++ performance

Ben Dudson, Joseph Parker, Peter Hill, 
David Dickinson

BOUT++ Workshop, LLNL
15th August 2018



2/36

Outline

● Overall scaling
● Low level optimisation

– Loop vectorisation, OpenMP parallelisation
– Inner vs Outer loops

● Time integration
– Physics based preconditioning
– Implicit-Explicit methods (IMEX)
– Jacobian Coloring + AMG

● Discussion



3/36

Profiling with Scalasca / Scorep
 Instrument functions by using SCORP0() macro

#include “bout/scorepwrapper.hxx”

int init(bool restart) {
  SCOREP0();
  ...
}

 Load module (if needed) and configure 

module load scalasca
./configure –enable-scorep
make
scalasca -analyse mpirun -np 48 elm-pb



4/36

Scaling: elm-pb 
Over the last ~ 2 years the speed has improved significantly
→ Can do with 32 processors what would take 128 before

J.Parker



5/36

Scaling: elm-pb 
Unfortunately this improved efficiency means the scaling doesn’t look 
quite as good...

J.Parker



6/36

Scaling: STORM
Scaling using Scalasca on Marconi,  196 x 16 x 128 grid
Staggered grids, RK4 timestepping, MPI only.

J.Parker

Bottlenecks: Laplacian inversion, communication, interpolation



7/36

Outline

● Overall scaling
● Low level optimisation

– Loop vectorisation, OpenMP parallelisation
– Inner vs Outer loops

● Time integration
– Physics based preconditioning
– Implicit-Explicit methods (IMEX)
– Jacobian Coloring + AMG

● Discussion



8/36

C++11, clearer faster loops
Previous BOUT++ versions used C-style pointers, nested loops

Now use C++11 range-based loops:

We would like this loop to be over arbitrary regions (e.g. for 
differential operators, boundary conditions)

How to get this to both OpenMP parallelise and vectorise? 

P.Hill, D.Dickinson, J.Parker, B.Dudson



9/36

C++11, clearer faster loops
The solution used is to separate into an inner loop which can 
vectorise, and an outer loop which can be OpenMP parallelised

Start 1 End 1

Start 2 End 2

Start 3 End 3

Start 4 End 4

Start 5 End 5

... ...

O
pe

nM
P 

pa
ra

lle
lis

e

Vectorise

Need sufficient contiguous 
block size to fill a vector buffer
(~128 usually enough)

Need sufficient number of 
blocks to spread work 
>= number of threads

P.Hill, D.Dickinson, J.Parker, B.Dudson



10/36

C++11, clearer faster loops
Testing a simple loop with algebraic operations on fields
New method shows good scaling, particularly with ~ 8 threads 
(NUMA region has 12 cores)

P.Hill, D.Dickinson, J.Parker, B.Dudson



11/36

C++11, clearer faster loops
Comparing to other methods, ~same as C loop, faster than basic 
C++11 range-for loop.

P.Hill, D.Dickinson, J.Parker, B.Dudson



12/36

Inner vs Outer loops
Operator overloading is used for arithmetic operators

r = a*b + c

r.allocate();
BLOCK_REGION_LOOP(mesh->getRegion3D(“RGN_ALL”), i) {
  r[i] = a[i]*b[i] + c[i];
}

Needs only one loop. More work for each thread, and should have 
fewer cache misses.

Needs 2 loops over the domain. Can be inefficient for small grids or 
many cores



13/36

Inner vs Outer loops
The blob2d example is a simplified 2D model of a plasma blob
ddt(n) = -bracket(phi, n, BRACKET_ARAKAWA)
      + 2*DDZ(n)*(rho_s/R_c)
      + D_n*Delp2(n);

The blob2d-outerloop example uses operators at given index 
ddt(n)[i] = -bracket_arakawa(phi, n, i)
            + 2 * DDZ_C2(n, i) * (rho_s / R_c)

5.000e+01         62       2.65e+00    71.7   17.2    0.0    0.3   10.7
1.000e+02         28       1.21e+00    71.5   17.2    0.0    0.8   10.6

5.000e+01         54       1.76e+00    62.0   22.4    0.0    0.5   15.0
1.000e+02         19       6.35e-01    60.8   21.8    0.0    1.7   15.6

4.27 x 10-2 sec. per iteration

3.26 x 10-2 sec. per iteration



14/36

Summary of low-level optimisation
● Loops are now about as efficient as they can be

● Many parts of BOUT++ now OpenMP parallel and use vectorisation

● Further improvements may come from reducing the number of 
loops, rearranging operations, and higher level changes

● Laplacian inversion, communications and interpolation the main 
scaling bottlenecks (for STORM model)



15/36

Outline

● Overall scaling
● Low level optimisation

– Loop vectorisation, OpenMP parallelisation
– Inner vs Outer loops

● Time integration
– Physics based preconditioning
– Implicit-Explicit methods (IMEX)
– Jacobian Coloring + AMG

● Discussion



16/36

Plasma equations
● Coupled set of nonlinear partial differential equations. Typically < 10 scalar 

quantities evolved per grid point, with ~10^6 - 10^8 grid points. 

● Approximately incompressible fluid in 2D plane perpendicular to the magnetic 
field. Coupled hyperbolic and elliptic problem (some parabolic terms: cross-field 
diffusion, viscosity).

● Compressible fluid along magnetic field. Mixed hyperbolic and parabolic: fast 
heat conduction with strongly nonlinear conduction coefficient ~ T^(5/2)

● Light wave removed from the system analytically, but retains e.g.
– shear Alfven wave, ~ 10^7m/s, 
– Sound speed ~ 10^5 m/s, 
– electron thermal speed ~10^6m/s.

● Ion cyclotron timescale removed analytically (~ 0.1 microseconds), but typical 
timesteps much smaller, typically limited by 3D (parallel) dynamics



17/36

Large range of timescales
● Initial Alfvenic oscillations f~500 kHz damp on ~20 μs timescale
● Followed by slower oscillation with f ~ 6.7 kHz
● Profiles evolving on ~ 10ms timescale (0.1 kHz)

Parallel sound wave

Geodesic Acoustic Mode

Shear Alfven wave (global)



18/36

Challenges
● Relatively long simulation times are needed for profile evolution

~ 10s – 100s of milliseconds
● Turbulence is on short timescales ~ microseconds. Simulation 

timestep can't be bigger than this.
→ Each timestep must be fast

● Typically timesteps are limited to a small fraction of the ion 
cyclotron time (~ 1e-8 seconds)

● Usually limited by electron parallel dynamics: 2D (drift-plane) 
simulations have much larger timesteps than 3D

● Fully implicit time integration (JFNK) hard to precondition for these 
problems: complicated operator with many dispersive waves, 
strong 3D coupling of electrostatic potential through vorticity and 
electron dynamics
→ Better preconditioning strategies needed



19/36

Implicit time integration
See BOUT++ workshop 2011 (L.Chacon), 2013 (B.Dudson)

● Example: a first-order scheme (Backwards Euler):

● Newton-Krylov solvers used to solve this nonlinear system of equations

● Typically f is ~10 – 100 million variables, so J is a large matrix
● Never need to calculate or store J. Use Jacobian Free method:

● Fast time scales  make this equation more singular and harder to solve 
→ We need a preconditioner



20/36

Preconditioning
● Preconditioning improves the condition number of this matrix 

inversion, enabling convergence in fewer iterations, or larger 
time step.

● Usually requires an approximate Jacobian, containing the 
fastest timescales (largest eigenvalues)

● Two main approaches tried so far:
– Physics-based preconditioning 
– Jacobian coloring



21/36

Chosen to be similar to JOREK:
G.Huysmans  PPCF 51 (2009) 124012
but with addition of ion diamagnetic term

Example: MHD model
2-fluid collisional plasma model, with density, Te and Ti

B Dudson, S Farley, L Curfmann-McInnes ArXiv:  plasm-phys/1209.2054
B Dudson et al JPP 2015



22/36

Simplify the model
● Need an efficient way to find an approximate solution to

 
where J is the Jacobian of the system, evolving variables f

● Use what we know about the physics to design a preconditioner
L.Chacon, Phys. Plasmas 15 (2008) 0560131) Simplify the equations

B Dudson, S Farley, L Curfmann-McInnes ArXiv:  plasm-phys/1209.2054
B Dudson et al JPP 2015



23/36

Simplify the model
● Need an efficient way to find an approximate solution to

 
where J is the Jacobian of the system, evolving variables f

● Use what we know about the physics to design a preconditioner
L.Chacon, Phys. Plasmas 15 (2008) 0560131) Simplify the equations

B Dudson, S Farley, L Curfmann-McInnes ArXiv:  plasm-phys/1209.2054
B Dudson et al JPP 2015

Parallel heat 
conduction

Shear Alfven wave



24/36

Calculate Jacobian and factorise
1) Simplify the equations
2) Calculate Jacobian. Partial derivatives of RHS w.r.t variables

3) Shur factorise the matrix to be solved

Shear Alfven wave



25/36

Decouple parallel and perpendicular
1) Simplify the equations
2) Calculate Jacobian. Partial derivatives of RHS w.r.t variables
3) Shur factorise the matrix to be solved
4) Use an approximation to decouple parallel and perpendicular 

derivatives

Generic solver class, reduces 
this to many 1D systems, 

solved simultaneously

Shear Alfven wave

Parallel heat conduction



26/36

Preconditioning can be highly effective
● Preconditioner uses the same

operators as the time-derivative
evaluation.

● Easily implemented as another
call-back function

● Rapidly converges to solution,
in cases which previously
stalled

B Dudson, S Farley, L.C. McInnes
ArXiv:  plasm-phys/1209.2054



27/36

Preconditioning can be highly effective
● Preconditioner uses the same

operators as the time-derivative
evaluation. 

● Easily implemented as another
call-back function

● Rapidly converges to solution,
in cases which previously
stalled

● Led to significant speedups 
(x10 – 100 in some cases)

B Dudson, S Farley, L.C. McInnes
ArXiv:  plasm-phys/1209.2054



28/36

Preconditioning examples

● examples/preconditioning/wave is a simpler wave equation. 
Described in the online manual.

● examples/reconnect-2field evolves just vorticity and A||, a 
simplified version of the MHD problem shown earlier.

● examples/preconditioning/diffusion-nl solves a nonlinear diffusion 
equation using preconditioning and/or IMEX methods

Several examples with documentation:



29/36

Dispersive waves
● The preconditioner described previously works for MHD-type 

problems, but doesn’t work with slightly more complicated models.

Isothermal electrons



30/36

Dispersive waves
● The preconditioner described previously works for MHD-type 

problems, but doesn’t work with slightly more complicated models.

Isothermal electrons

The dispersion relation becomes:

→ Parallel wave speed depends on perpendicular wavenumber



31/36

Implicit – Explicit (IMEX) schemes
● For many problems the implicit PVODE/CVODE solvers work well
● In some cases however they can fail

Example: Advection of a pulse in 1D

PVODE integrator, absolute tolerance 1e-12, relative tolerance 1e-5
CFL condition limits explicit methods to 128 steps, or 512 evaluations for RK4
The RK3-SSP method requires dt < 0.2 dt(CFL), or 1920 evaluations

Fromm (2nd order)

PVODE: 2904 evals PVODE: 3073 evals PVODE: 75,585 evals

Central differencing 
with dissipation XPPM (nonlinear limiter)



32/36

Implicit – Explicit (IMEX) schemes
● Allow separation of problem into stiff (timestep limiting) 

and non-stiff parts 

● Treat parts of the problem implicitly, parts explicitly
● Simplifies implicit part, perhaps making preconditioning easier 
● Explicit part no longer in GMRES loop
● Can use limiter schemes, strong nonlinearities which stall implicit 

solvers

● Some work on this already in BOUT++ using IMEX-BDF2 scheme 
and coupling to ARKODE (Sundials). Matrix coloring (using PETSc) 
works very well in some cases

→ Works well for “toy” problems, too fragile for “real” problems

See examples/IMEX/



33/36

Jacobian coloring
● Usually matrix-free methods are used, to avoid having to calculate or store 𝕁
● Knowing 𝕁 enables many off-the-shelf preconditioners to be used
● 𝕁 can be calculated using finite differences, but brute-force is very slow
● 𝕁 must be sparse → potential must be solved as a constraint

See examples/IMEX/diffusion-nl and drift-wave-constraint

● Specify where the non-zero elements of 𝕁 are

● If in doubt, include more non-zero elements

● Current system assumes 5-point stencil coupling all evolving fields

Jacobian coloring (PETSc)



34/36

Summary of time stepping

● For models where the shear Alfven wave is the limiting 
timescale, simple preconditioners can be very effective.

● Most models of interest have fast dispersive waves, 
requiring 3D solves.

● Several schemes have been tried, but beating Sundials’ JFNK 
(without preconditioning) has proved hard for real problems.



35/36

Outline

● Overall scaling
● Low level optimisation

– Loop vectorisation, OpenMP parallelisation
– Inner vs Outer loops

● Time integration
– Physics based preconditioning
– Implicit-Explicit methods (IMEX)
– Jacobian Coloring + AMG

● Discussion



36/36

Discussion issues
● Avoid or improve 3D elliptic solves

– A bottleneck to scaling is global ϕ solves
– Preconditioning of dispersive high frequency waves

● Jacobian coloring strategies
– Handling interpolations, FFTs?

● Improve cache, threading efficiency
– Better domain / threading decomposition
– OpenMP tips/tricks 


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

