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Outline

• Motivation: extended (two-fluid) MHD and the tyranny of scales

• Parabolization of XMHD: key for SCALABILITY

• 2D Low-β extended MHD (large guide field)

– Application to magnetic reconnection

• 3D extended MHD solvers
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“The tyranny of scales”
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Algorithmic challenges in XMHD

• XMHD has mixed character, with strongly hyperbolic and parabolic components.

• Numerically, XMHD is a nonlinear algebraic system of very stiff equations:

– Parabolic stiffness (diffusion): κ(J) ∼ ∆t D
∆x2 � 1

– Hyperbolic stiffness (linear and dispersive waves): κ(J) ∼ ∆t ω f ast ∼ ∆t
∆tCFL

� 1

• Brute-force algorithms will not be able to cover the span between disparate time/length scales,

regardless of computer power.

• Key algorithmic requirement: SCALABILITY [CPU ∼ O(N/np)]!

– Minimize number of degrees of freedom N: spatial adaptivity.

– Follow slowest time scales (application dependent): implicit time stepping.

• Scalable implicit methods require MULTILEVEL approaches:

CPU ∼ O
(

N log(N)

nβ
p

)
, β . 1
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Implicit time-stepping: Jacobian-Free Newton-Krylov Methods

• Objective: solve nonlinear system ~G(~xn+1) =~0 efficiently (scalably).

• Converge nonlinear couplings using Newton-Raphson method:
∂~G
∂~x

∣∣∣∣∣
k

δ~xk = −~G(~xk) .

• Jacobian-free implementation:

(
∂~G
∂~x

)
k

~y = Jk~y = lim
ε→0

~G(~xk + ε~y)− ~G(~xk)

ε

• Krylov method of choice: GMRES (nonsymmetric systems).

• Right preconditioning: solve equivalent Jacobian system for δy = Pkδ~x:

JkP−1
k Pkδ~x︸︷︷︸

δ~y

= ~−Gk

Approximations in preconditioner do not affect accuracy of

converged solution; they only affect efficiency!

• The rest of the talk will discuss the development of suitable preconditioners Pk!
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Preconditioning: multilevel (multigrid) methods

• MG employs a divide-and-conquer approach to attack error components in the solution.

– Oscillatory components of the error are “EASY” to deal with (if a SMOOTHER exists)

– Smooth components are DIFFICULT.

Idea: Coarsen grid to make "smooth" components oscillatory, and proceed recursively

• SMOOTHER is make or break of MG!

• Stiff hyperbolic equations challenge MG, because smoothers are hard to formulate.

• In general, smoothers are easy to find for parabolic systems: PARABOLIZATION!
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MG methods for stiff hyperbolic equations:
Parabolization and block factorization (Schur complement)

• Parabolization is a natural consequence of implicit timestepping:

∂tu =
1
ε

∂xv , ∂tv =
1
ε

∂xu.

un+1 = un +
∆t
ε

∂xvn+1, vn+1 = vn +
∆t
ε

∂xun+1.

[
I −

(
∆t
ε

)2

∂xx

]
un+1 = un +

∆t
ε

∂xvn

• This can be exploited to develop optimal MG solvers for stiff hyperbolic systems
• PARABOLIZATION via BLOCK FACTORIZATION (Schur complement):[

D1 U

L D2

]
=

[
I UD−1

2

0 I

] [
D1−UD−1

2 L 0

0 D2

] [
I 0

D−1
2 L I

]
.

D1−UD−1
2 L =

[
I −

(
∆t
ε

)2

∂xx

]
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Our approach to a successful fully implicit algorithm for XMHD

• Fully implicit time-stepping: JFNK + MG

• Combination of Krylov methods and MG preconditioning is optimal:

– Even if a smoother exists, MG is remarkably temperamental

– MG preconditioning provides scalability

– Krylov solver provides robustness

• Exploit parabolization of hyperbolic eqs for effective MG

• We have successfully applied this recipe to various MHD systems:

– 2D reduced resistive1 and Hall MHD2 (high-β)

– 3D resistive3 and Hall MHD4

• We bring along a new application, 2D low-β extended MHD5, and revisit our 3D extended MHD

work.

1LC, D. A. Knoll, J. M. Finn, J. Comput. Phys., 178, 15-36 (2002)
2LC, D. A. Knoll, J. Comput. Phys., 188 (2), 573-592 (2003)
3LC, Phys. Plasmas 15, 056103 (2008)
4LC, J. Physics: Conf. Series, 125, 012041 (2008); JCP, in preparation
5LC and A. Stanier, J. Comput. Phys, 326 (2016)
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2D low-β extended MHD
LC and A. Stanier, J. Comput. Phys, 326 (2016)
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Extended (two-fluid, Hall) MHD model equations

∂ρ

∂t
+ ∇ · (ρ~v) = 0,

∂~B
∂t

+ ∇× ~E = 0,

∂(ρ~v)
∂t

+∇ ·
[
ρ~v~v− ~B~B +

←→
Π +

←→
I (p +

B2

2
)

]
= 0,

∂pe

∂t
+∇ · (~vpe) + (γ− 1)pe∇ ·~v = (γ− 1)(S−∇ ·~q).

~v = mi~vi+me~ve
mi+me

≈ ~vi ; ~ve = ~vi − di
~j
ρ

Ohm′s Law : ~E = −~v× ~B + η~j− di
ρ (
~j× ~B−∇pe −∇ ·

←→
Πe )−d2

e
di

d~ve
dt
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Low-β extended MHD limit

• Large guide field regime Bz � Bp, β = 2µ0p/B0 � 1 (tokamak, solar corona, etc.)

• Cold ions (Ti � Te), to neglect finite Larmor radius effects (gyroviscosity)

∂tF + vs · ∇F = η∇2ψ− ηH∇4ψ,

∂tΩ + v · ∇Ω = B · ∇J + µ∇2Ω

F = ψ− d2
e J ; J = ∇2ψ ; Ω = ∇2φ

v = z×∇φ ; B = z×∇ψ ; vs = z×∇(φ− ρ2
s Ω)

• Here:

– ρs = ω−1
i (Te/mi)1/2 is the sound Larmor radius

– de = c/ωpe is electron skin depth (measure of importance of inertial effects)

• We choose to transform vorticity equation in terms of streamfunction (requires Poisson inversion

in residual; critical for large-scale performance with 2nd-order discretizations):

∂tφ +∇−2 [v · ∇(∇2φ)− B · ∇(∇2Ψ)
]
= µ∇2φ
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Low-β extended MHD system: properties and challenges

• The low-β extended MHD model looks deceptively simple:

– Supports two microscopic length scales, ρs and de

– Supports multiple time scales (dispersive waves):

ω2 = k2
‖
1 + ρ2

s k2

1 + d2
e k2

– Fast dispersive waves supported for ρs > de [or β > (me/mi)2]:

ω ≈


±k‖, kρs < 1 (Alfven wave)

±ρsk‖k, kρs > 1 > kde (Kinetic Alfven wave; quadratic)

±ρs
de

k‖, kde > 1 (Scaled Alfven wave)

• There currently exists no scalable solver for this system, and practitioners revert to direct or ILU

solvers/smoothers to deal with it.6,7

6K. Germaschewski et al., NUMERICAL MODELING OF SPACE PLASMA FLOWS, ASP Conference Series, Vol. 359, 2006
7S. Ovtchinnikov et al., J. Comput. Phys. 225 (2007) 1919–1936.
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Physics-based preconditioning strategy

• Consider linearized equations around a given state φ0, ψ0, and Ω0:

Ls
ηψ̃− B∗0 · ∇φ̃ + ρ2

s B0 · ∇Ω̃ = −Gψ, (1)

LµΩ̃ + ṽ · ∇Ω0− B0 · ∇(∇2ψ̃) + (z×∇J0) · ∇ψ̃ = −∇2Gφ, (2)

Ls
η =

I− d2
e∇2

∆t
+ vs,0 · ∇ − d2

e(v0 · ∇)∇2− η∇2 + ηH∇4,

Lµ =
I

∆t
+ v0 · ∇ − µ∇2.

• First key step: commute (approximately) the Laplacian operator in vorticity equation:8

Lµφ̃− B0 · ∇ψ̃ ≈ −Gφ. (3)

8LC, Knoll, Finn, JCP 2002
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Physics-based preconditioning strategy (cont.)

• Replace this equation into flux equation, to find:[
I− d2

e∇2

∆t
+ vs,0 · ∇ − d2

e(v0 · ∇)∇2 + ηH∇4
]

ψ̃ (Advection, Diffusion, Inertia)

−(B∗0 · ∇) L−1
µ (B0 · ∇)ψ̃ (Alfven wave)

−(B0 · ∇) L−1
µ (B†

0 · ∇)ψ̃

+ρ2
s(B0 · ∇) L−1

µ (B0 · ∇)∇2ψ̃ (KAW wave)

= −Gψ + (B∗0 · ∇)L−1
µ

[
−Gφ − ρ2

s(−∇2Gφ)
]

where:

B∗0 = z×∇F0 ; B†
0 = ρ2

s z×∇J0.
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Physics-based preconditioning strategy (cont.)

• As written, however, this equation is impractical to solve due to the presence of L−1
µ operators.

• Postulate a stationary iterative procedure:9 Lµ = Dµ − (Dµ −Lµ)

• Lagging the off-diagonal component gives:

φ̃m+1 = D−1
µ B0 · ∇ψ̃m+1 + rhsm

φ , (4)

Ω̃m+1 = D−1
µ

[
B0 · ∇(∇2ψ̃m+1) + B̃m+1 · ∇(∇2ψ0)

]
+ rhsm

Ω.

• Replacing these results into the flux equation finally gives a tractable equation for ψ̃:

Ls
ηψ̃m+1 − (B0 · ∇)D−1

µ (B0 · ∇)ψ̃m+1 (5)

+ ρ2
s(B0 · ∇)D−1

µ

[
(B0 · ∇)∇2ψ̃m+1 + (z×∇J0) · ∇ψ̃m+1] (6)

= −Gψ + (B0 · ∇)
[
rhsm

φ − ρ2
srhsm

Ω

]
. (7)

9LC, Knoll, Finn, JCP 2002
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Physics-based preconditioning strategy (cont.)

• Summary of preconditioning strategy:

– Solve for RHS, ∇−2[−GΩ −Lµ(−Gφ)] ≡ rhsφ

– Perform a few iterations (m . 2) on parabolized scalar equation:

Ls
ηψ̃m+1 − (B0 · ∇)D−1

µ (B0 · ∇)ψ̃m+1

+ ρ2
s(B0 · ∇)D−1

µ

[
(B0 · ∇)∇2ψ̃m+1 + (z×∇J0) · ∇ψ̃m+1]

= −Gψ + (B0 · ∇)
[
rhsm

φ − ρ2
srhsm

Ω

]
.

– Update vorticity and streamfunction:

LµΩ̃ + ṽ · ∇Ω0− B0 · ∇(∇2ψ̃) + (z×∇J0) · ∇ψ̃ = −GΩ,

Ω̃−∇2φ̃ = −Gφ.
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Linear verification results

• We choose the cosine doubly periodic tearing mode problem:10

ψ0 = J0 = cos(y) ; x ∈ (−2π, 2π) ; y ∈ (−π, π)

• Doubly periodic domain (can be integrated in half domain using symmetry BCs)

• We choose two regimes with kx =
2π
Lx

= 0.5:

– ρs = 0.1, de = 0.01, , η = µ = 10−5, ηH = 0 (γ = 2.5797× 10−3)

– ρs = 0.01, de = 0.1, η = µ = 10−5, ηH = 0 (γ = 5.2841× 10−3)

10Bhattacharjee et al, PoP 12 (2005)
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Serial grid convergence study (doubly periodic tearing mode)

ρs = 0.1, de = 0.01

100 time steps, ∆t = 1.0, 2 SI iterations, 2 V(3,3) MG cycles
Grid ηH GMRES/∆t Newton/∆t WCT (s) WCTexp/WCT ∆t/∆texp

32×32 3× 10−4 0.0 2.0 48 1.5 10

64×64 7.7× 10−5 0.0 2.0 192 9.4 41.5

128×128 1.9× 10−5 0.2 2.4 911 32 166

256×256 4.8× 10−6 0.4 2.6 4280 107 664

512×512 1.2× 10−6 1.4 2.9 21170 392 2656

• Explicit solver is RK2

– Each step requires inversion of elliptic couplings (∇2φ = Ω and (1/∆t− d2
e∇2)Ψ = F)

– We solve these to same relative tolerance as implicit solve

• Implicit solver is BDF2

– rtol = 10−4

– GMRES/∆t < 1 because we use preconditioner for initial guess

– Hyperresistivity adapts to provide dissipation at grid scale (stiffness does not grow with mesh)
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Time-step convergence study (doubly periodic tearing mode)

ρs = 0.1, de = 0.01

64x64, Tmax = 100, 2 SI iterations, 2 V(3,3) MG cycles
∆t GMRES/∆t Newton/∆t WCT (s) WCTexp/WCT ∆t/∆texp

0.1 0.0 1.0 1100 1.6 4

0.5 0.0 2.0 366 5 21

1.0 0.0 2.0 192 9.4 41.5

5 1.2 4.2 92 20 207

WCTexp

WCT
∼ ∆t0.6

• It is advantageous to use larger time steps for efficiency (up to a point, determined by accuracy

and/or algorithmic degradation)
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Parallel weak convergence study (doubly periodic tearing mode)

ρs = 0.1, de = 0.01

∆t = 1.0, 10 time steps, 2 SI iterations, 2 V(3,3) MG cycles
Np Grid ηH GMRES/∆t Newt/∆t WCT (s) WCT/PC WCTexp

WCT
∆t

∆texp
∆t

∆twave

1 64× 64 7.7× 10−5 0 2.8 72.3 25.8 6.4 41.5 27.1

4 128× 128 1.9× 10−5 0 2.9 79.5 27.4 24.3 166 77.8

16 256× 256 4.8× 10−6 0 3.0 91.8 30.6 95.3 664 215.7

64 512× 512 1.2× 10−6 0.3 3.4 139.2 37.6 276.3 2656 555.6

256 1024× 1024 3.0× 10−7 1.0 3.6 188.6 41 881.9 10627 1315.2

1024 2048× 2048 7.5× 10−8 2.1 3.7 265.3 45.7 2705 42508 2908.5

4096 4096× 4096 1.9× 10−8 4.7 4.3 556.3 61.8 6758 170030 6148.5

WCT/PC ∼ log(Np)

• Implicit timestep is kept constant!

• WCT increases only by factor of 8 between 1 and 4096 cores (compared to factor of 4096 for

explicit from CFL constraints)
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Nonlinear application: Magnetic reconnection

Figure 1: NASA video of a geomagnetic substorm

• Observations confirm magnetic reconnection is explosively fast

• Theory requires magnetic field dissipation at microscopic length scales for reconnection to occur

• Dissipation in space environment is arbitrarily small, length scales arbitrarily large
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Nonlinear simulations: fast reconnection in low-β regimes

• We have performed 2D nonlinear simulations to understand fast reconnection in low-β regimes11

– Developed a nonlinear theory for fast reconnection in low-β regimes.

– Compared against kinetic simulations (VPIC) to understand fundamental differences

between kinetic and fluid reconnection

• We conclude that reconnection is FAST (independent of dissipation and system size) for all

regimes with finite de, ρs (a controversial result)

11Stanier et al, Phys. Plasmas, 2014, 2015
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Nonlinear simulations: fast reconnection in low-β regimes (cont.)

• Agreement between fluid and kinetic is good also in the reconnection time history12

• Harris sheet, de = 0.01, ρs = 2× 10−3, ηH = 10−9, µ = 10−5

Kinetic
(VPIC)

Fluid
(PIXIE2D)

(a) de = 0.01, ρs = 2× 10−3

Fluid
(PIXIE2D)

Kinetic
(VPIC)

(b) ρs = 0.01, de = 2× 10−3

12A. Stanier et al., Phys. Plasmas, 2014, 2015
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Nonlinear simulations: fast reconnection in low-β regimes (cont.)

• Harris sheet, ρs = 2× 10−3, ηH = 10−9, µ = 10−5

• Up-down symmetry is enforced in fluid simulation

(a) de = 0.01 ; ρs = 0.002 (b) de = 0.002 ; ρs = 0.01

Luis Chacon, chacon@lanl.gov


de=0_01-rhos=0_002.mp4
Media File (video/mp4)


rhos=0_01-de=0_002.mp4
Media File (video/mp4)



3D resistive MHD implicit solver
L. Chacón, Phys. Plasmas 15, 056103 (2008)
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Resistive MHD model equations

∂ρ

∂t
+ ∇ · (ρ~v) = 0,

∂~B
∂t

+ ∇× ~E = 0,

∂(ρ~v)
∂t

+∇ ·
[
ρ~v~v− ~B~B +

←→
Π +

←→
I (p +

B2

2
)

]
= 0,

∂pe

∂t
+∇ · (~vpe) + (γ− 1)pe∇ ·~v = (γ− 1)(S−∇ ·~q).

• Simple viscous closure for stress tensor:
←→
Π ≈ −ρνi∇~v

• Resistive Ohm’s law:
~E = −~v× ~B + η~j
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Resistive MHD Jacobian block structure

• The linearized resistive MHD model has the following couplings:

δρ = Lρ(δρ, δ~v)

δT = LT(δT, δ~v)

δ~B = LB(δ~B, δ~v)

δ~v = Lv(δ~v, δ~B, δρ, δT)

• Therefore, the Jacobian of the resistive MHD model has the following coupling structure:

Jδ~x =


Dρ 0 0 Uvρ

0 DT 0 UvT

0 0 DB UvB

Lρv LTv LBv Dv




δρ

δT

δ~B

δ~v


• Diagonal blocks contain advection-diffusion contributions, and are “easy” to invert using MG

techniques. Off diagonal blocks L and U contain all hyperbolic couplings.
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PARABOLIZATION: Schur-complement formulation

• We consider the block structure:

Jδ~x =

[
M U

L Dv

](
δ~y

δ~v

)
; δ~y =


δρ

δT

δ~B

 ; M =


Dρ 0 0

0 DT 0

0 0 DB


• M is “easy” to invert (advection-diffusion, not very stiff, MG-friendly).

Schur complement analysis of 2x2 block J yields:

[
M U

L Dv

]−1

=

[
I 0

−LM−1 I

] [
M−1 0

0 P−1
Schur

] [
I −M−1U

0 I

]
,

PSchur = Dv − LM−1U .

• EXACT Jacobian inverse only requires M−1 and P−1
Schur.

• Schur complement formulation is fundamentally unchanged in extended MHD!
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Physics-based preconditioner (PBP)

• The Schur complement analysis translates into the following 3-step EXACT inversion algorithm:

Predictor : δ~y ∗ = −M−1Gy

Velocity update : δ~v = P−1
Schur[−Gv − Lδ~y ∗], PSchur = Dv − LM−1U

Corrector : δ~y = δ~y ∗ −M−1Uδ~v

• MG treatment of PSchur is impractical due to M−1.

– Small-flow limit: v� vA ⇒ M−1 ≈ ∆t

– We have developed extensions for arbitrary flows
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PBP: small-flow limit

• Small flow approximation: M−1 ≈ ∆t in steps 2 & 3 of Schur algorithm:

δ~y ∗ = −M−1 Gy

δ~v ≈ P−1
SI [−Gv − Lδ~y ∗] ; PSI = Dv − ∆tLU

δ~y ≈ δ~y ∗ − ∆tUδ~v

where:

PSI = ρn
[←→

I /∆t + θ(~v0 · ∇
←→

I +
←→

I · ∇~v0− νn∇2←→I )
]
+ ∆tθ2W(~B0, p0)

W(~B0, p0) = ~B0×∇×∇× [
←→

I × ~B0]−~j0×∇× [
←→

I × ~B0]−∇[
←→

I · ∇p0 + γp0∇ ·
←→

I ]

• PSI is block diagonally dominant by construction!

• We employ multigrid methods (MG) to approximately invert PSI and M: 1 V(4,4) cycle
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PBP: 2D serial performance (tearing mode)

∆t convergence study (128x128)
∆t GMRES/∆t CPUexp/CPU ∆t/∆tCFL

0.5 8.0 8.0 380

0.75 9.5 10.0 570

1.0 11.2 12.7 760

1.5 14.6 14.6 1140

Grid convergence study (∆t = 1200∆tCFL)
N GMRES/∆t CPUexp/CPU ∆t/∆tCFL

32x32 14 2.43 159

64x64 11.8 5.8 322

128x128 11.2 13.3 667

256x256 11.4 28.5 1429

CPU ∼ O(N) OPTIMAL SCALING!
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PBP: 3D serial performance (island coalescence)

10 time steps, ∆t = 0.1, V(3,3) cycles, mg tol=1e-2

Grid GMRES/∆t CPU

163 5.5 81

323 7.9 1176

643 7.0 11135

Luis Chacon, chacon@lanl.gov



PBP: 3D parallel performance (island coalescence)
(163 grid points per processor; old result – 2008)

∆t = 0.1� ∆tCFL
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Verification: Solov’ev Equilibria
(κ = 1, n=2, 64× 64× 64)13

z
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γPIXIE3D = 2.01 (vs. 2.196 in Schnack et al. in our units)
13See e.g. Schnack et al., JCP 140 (1998) and refs. therein
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Application: Sawteeth mitigation by boundary magnetic
perturbations14

D Bonfiglio et al

4

employed approach to obtain a diverted tokamak makes pos-
sible to model the magnetic separatrix and even the outside 
scrape-off layer with more flexibility than MHD codes based 
on flux coordinates. For instance, a plasma edge layer close 
to the separatrix must be excluded in MHD modelling with 
the mars code to avoid the numerical singularity that would 
be introduced by the X-point, and this could be problematic 
for the treatment of edge localized peeling modes [45–47]. A 
shaped computational mesh can be used in pixie3d instead 
of a circular one. This will be exploited in future diverted 
tokamak studies to reduce the fraction of the computational 
domain outside the separatrix (now around 40% of the total 
mesh points) and, more importantly, to take into account the 
stabilizing effect on external kink modes of a close conduc-
tive wall.

3.2. Reference 3D simulation without n  =  1 MPs

We next discuss full 3D simulations based on the above 
D-shaped equilibrium configuration. These simulations use 
a 3D mesh with 128 points in the radial direction, 64 points 
in the poloidal angle and 64 points in the toroidal one. The 
inclusion of the third coordinate makes possible to study 3D 
instabilities such as the internal kink mode. As discussed in 
[37], a pixie3d mesh with 64 points in the poloidal direction 
is adequate to support both m  =  1 and higher-m harmonics.

The reference simulation without non-axisymmetric MPs 
is reported in figure  2. Quasi-periodic sawtooth oscillations 
associated with the internal kink mode are observed. The 
dynamics is qualitatively similar to what previously reported 
in circular tokamak studies with specyl and pixie3d codes 
[22, 36, 37]. As shown in panel (a), the safety factor at the 
magnetic axis Ψ = 0 makes a first jump from ( )!q 0 0.8 to 
( )!q 0 1 and then undergoes periodic sawtooth oscillations 

in the range from 0.9 to 1. These oscillations are driven by 
the nonlinear dynamics of the internal kink mode. To prop-
erly characterize such dynamics, the spectrum of the perturbed 
magnetic field = −b B B0 is computed in the flux coordi-
nate system ( )ρ θ φ, ,f  associated with the axisymmetric field  

B0. Here, ρ =
π
Ψ
2

 is the radial-like coordinate and θf is the 
poloidal angle-like coordinate that makes the B0-field lines 
straight when the toroidal symmetry angle φ is retained, as 
explained in the appendix. The Fourier analysis of the contra-

variant component ˆ ( )ρ θ φ =ρ ρ
φ

⋅ ∇
⋅ ∇

b q, , b
Bf

0
 is then performed in 

the two periodic coordinates θf and φ, similarly to what is done 
for instance in [48–51]. The ˆρb  component is essentially the 
perturbed flux function, and its Fourier harmonics are more 
meaningful in determining the corresponding magnetic island 
width than those of the true normal component ρ⋅ ∇b  [49]. 
The main spectral component of the internal kink mode is the 
1/1 Fourier harmonic of ˆρb . Indeed, as shown in panel (b), the 
core absolute amplitude of ˆ /

ρ
b1 1 grows during slow resistive 

phases with decreasing q(0) until a sudden jump to ( )!q 0 1 is 
triggered. Then, the 1/1 amplitude crashes and the cycle starts 
over again.

In panels (c)–(d), the magnetic field configuration is ana-
lyzed in more detail at two times the maximum 1/1 ampl itude 
close to two consecutive sawtooth crashes. The structure of 
the internal kink mode in its nonlinear phase is apparent from 
the ˆ /

ρ
bm 1 radial profiles. At both times, the mode is composed 

by the dominant 1/1 harmonic, which goes to zero outside the 
q  =  1 resonant surface, plus poloidal harmonics up to !m 4 
due to the toroidicity, elongation and triangularity induced 
couplings with the 1/1 harmonic. In agreement with the tem-
poral evolution of the core ˆ /

ρ
b1 1 amplitude that reverses sign 

after each crash (except the big initial one), the ˆ /
ρ

b1 1 profiles 
have opposite signs at the two selected times. The m  >  1 
harmonics also reverse sign in order to maintain fixed phase 
relations with respect to the 1/1. This confirms that all the har-
monics are part of the same internal kink mode.

The Poincaré plots at constant toroidal angle, computed 
with the field-line tracing code nemato [52–54], are shown 
in panels (e)–(f) for the two selected times close to sawtooth 
crashes. A large magnetic island produced by the internal 
kink mode is observed at both times. The island is close to 
completely reconnecting the magnetic flux within the q  =  1 
surface, after which nested magnetic surfaces would be 

Figure 2. Reference 3D simulation without n  =  1 MPs, characterized by quasi-periodic sawtooth oscillations. (a) temporal evolution of 

the safety factor q at the magnetic axis Ψ = 0. (b) temporal evolution of the imaginary part of main n  =  1 harmonics of ˆ =ρ ρ
φ

⋅ ∇
⋅ ∇

b q B
B0

. 
The m  =  1 harmonic is plotted at /Ψ Ψ = 0.05sep , where the core peak associated with the internal kink mode is usually located, and m  >  1 
harmonics are plotted at the corresponding low-order resonances ( )Ψ =q m. The magnetic configurations at the two simulation times 
marked in panels (a) and (b) are reported in the remaining panels. (c)–(d) radial profiles of the imaginary part of main n  =  1 harmonics of ˆρb . ( )Ψ =q m resonances are marked with vertical colour lines. (e)–(f ) Poincaré plots at φ π=  (colour dots) and axisymmetric magnetic 
separatrix Ψ = Ψsep (black curves).
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field, E0  =  0. The latter condition results in no plasma current 
and hence no poloidal equilibrium field. The large resistivity 
and viscosity damp any initial current density and velocity 
fields, and a solution of the vacuum equations ∇× =B 0 
and ∇ ⋅ =B 0, consistent with the applied MPs, is found. The 
resulting vacuum br decreases towards the center. The abso-
lute value and poloidal location of br(a) peaks are chosen so 
that the maximum br perturbation obtained on the magnetic 
separatrix is around 10−3 with respect to the equilibrium 
toroidal field, as in typical experiments with applied MPs, and 
is poloidally localized as desired above and below the outer 
midplane.

The effect of such realistic MPs is now discussed, starting 
from the φ π∆ =  case reported in figure 4. The sawtoothing 
activity of the internal kink mode is mitigated by MPs in this 
case, similarly to what shown in circular tokamak model-
ling [22–24, 36]. In fact, the average period and the range of 
the q(0) sawtooth oscillations are significantly reduced with 
respect to the reference case without n  =  1 MPs. The oscilla-
tion period and maximum amplitude of the core ˆ /

ρ
b1 1 harmonic 

are also consistently reduced. It is interesting to note that the 
applied perturbation locks the phase of the internal kink. In 
fact, the core 1/1 harmonic does not reverse after each crash 
as in the reference case, but instead it stays positive in agree-
ment with the positive sign of the vacuum 1/1 component of 
the applied MP. This is consistent with the following interpre-
tation of the sawtooth mitigation effect [24]. The MP action 
provides a seed 1/1 perturbation in the core for the internal 
kink mode to grow after each crash. As a consequence, the 
time it takes for the internal kink to reach the nonlinear phase 
is significantly reduced with respect to the case without MPs, 
where the mode starts from a much smaller amplitude, even 
if the mode growth rate does not change. Therefore, the non-
linear jump of the central q is triggered earlier and the overall 
sawtooth oscillations become more frequent and less intense.

Let us look in more detail at the magnetic configuration 
just before the first sawtooth crash. The 1/1 harmonic of ˆρb  is 
characterized by the usual peak in the core due to the internal 
kink mode and it goes through zero close to the q  =  1 resonant 
surface like in the reference case, but now it increases again 
towards the edge as an effect of the applied MP. By com-
paring the 1/1 profile with the corresponding vacuum profile 
the plasma response to the applied MP can be estimated. The 

vacuum profile is screened by the plasma from the edge down 
to the q  =  1 surface. This effect is due the relatively small 
resistivity that opposes to rapid changes of magnetic topology 
such as the abrupt opening of the 1/1 magnetic island that 
would have occurred if the vacuum field had not be screened. 
A similar phenomenology is also observed for low-order reso-
nances with q  =  m  >  1. Indeed, the radial profiles of m  >  1 
harmonics of ˆρb  are significantly damped at the corresponding 
resonances, meaning that the highly conducting plasma is 
trying to screen out the resonant components of the applied 
MP to prevent the opening of magnetic islands. On the con-
trary, non-resonant m  <  0 harmonics (not shown here) remain 
essentially unaffected by the plasma.

A peculiar feature of resonant m  >  1 harmonics is observed 
as simulation time progresses. Such harmonics, which in the 
reference case without MPs are only present close to sawtooth 
crashes as part of the internal kink mode, are now significant 
throughout the whole simulation. Moreover, their absolute 
amplitudes at the corresponding resonant surfaces increase 
in time and eventually reach relatively large steady-state 
values. At the simulation time before the last reported saw-
tooth crash, the radial profiles of m  >  1 harmonics turn out to 
be significantly larger inside their resonances than the corre-
sponding vacuum profiles. Such profiles take the typical shape 
of tearing modes eigenfunctions [50, 61]. Tearing modes 
have been shown in section  3.2 to be linearly stable in the 
shaped configuration under investigation, so the occurrence 
of tearing-like profiles with applied MPs may sound baffling 
at first. This effect is actually caused by the amplification, due 
to marginally stable tearing modes, of the MP components 
resonant with those modes. This is referred to as resonant 
field amplification (RFA) [62, 63]. RFA studies in the litera-
ture mostly deal with marginally stable resistive-wall modes 
[64–66], but the RFA mechanism has been also considered 
for tearing modes [67]. The observed temporal evo lution of 
ˆ /
ρ

bm 1 harmonics, with a steady-state level achieved after a tran-
sient phase, is consistent with the analysis performed in [63] 
for the time-dependent plasma response to a constant external 
perturbation.

The different amplitude levels of m  >  1 harmonics at the 
two selected simulation times are clearly visible in the corre-
sponding Poincaré plots. The Poincaré plot for the time just 
before the first crash shows the usual 1/1 island in the core, 

Figure 4. 3D simulation with applied n  =  1 MPs with φ π∆ = . Sawtooth oscillations are mitigated (they become more frequent and less 
intense). The resonant field amplification of m  >  1 harmonics of the applied MP due to marginally stable tearing modes is also observed. 
Same quantities are reported as in figure 2. In panels (c)–(d), the radial profiles of vacuum ˆρb  harmonics are plotted with dotted lines.
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as well as m  >  1 islands with relatively small width. The 
presence of these m  >  1 islands is consistent with small but 
finite ˆ /

ρ
bm 1 amplitudes at the corresponding resonances. A rela-

tively narrow stochastic layer appears in the edge region as a 
result of the overlapping of island chains close to magnetic 
separatrix. Before the last sawtooth crash, when RFA due to 
marginally stable tearing modes has reached steady-state, the 
Poincaré plot is characterized by m  >  1 islands quite larger 
than before. The stochastic layer at the edge is also signifi-
cantly larger. Indeed, the last closed magnetic surface can be 
found just inside the m  =  3 island chain. Before the first crash, 
it was instead located outside the q  =  4 rational surface.

The numerical simulation (not shown here) with same MP 
phasing φ π∆ =  but three times larger MP amplitude predicts 
an almost complete suppression of sawteeth and the stimula-
tion of a 3D equilibrium with helical core, as observed in 
both RFP and circular tokamak modelling with relatively 
large MPs [22, 36]. On the other hand, the induced edge sto-
chasticity is also stronger, and magnetic chaos touches the 
2/1 island chain. Although a relative amount of edge stochas-
ticity can be acceptable in fusion plasmas and even benefi-
cial for ELMs mitigation [68], the rather large n  =  1 islands 
and associated magnetic chaos, induced by the substantial 
MPs required to mitigate or even supress sawteeth, may limit 
the applicability of n  =  1 external fields as a sawtooth con-
trol tool in fusion devices. However, additional physics not 
taken into account in this study could alleviate this issue in 
a real plasma. Indeed, plasma rotation [48, 69] and two-fluid 
effects [70, 71] are expected to reduce the width of edge 
islands induced by resonant MPs, whereas finite β will make 
the internal kink more unstable [72, 73] and thus more prone 
to respond to n  =  1 MPs [74]. The expected overall result 
is that, for a given MP amplitude, the sawtooth mitigation 
effect would be stronger than in the present work, but with 
less induced edge stochasticity. This expectation agrees with 
the experimental demonstration of sawtooth mitigation by 
n  =  1 MPs without any degradation of plasma confinement 
in DIII-D [24]. Still, the significant induced rotation braking 
[24] remains a possible limitation of this sawtooth control 
method.

We now discuss the effect of varying the relative phasing 
φ∆  between the top and bottom set of saddle coils, as can 

be done in experimental devices such as DIII-D and ASDEX 
Upgrade. The simulation case with φ∆ = 0 is discussed in 

figure  5. The sawtooth mitigation effect clearly observed 
for φ π∆ =  is not obtained in this case. Indeed, the average 
period and amplitude of q(0) oscillations are quite similar to 
the reference case without applied MPs, and even the phase 
flip of the internal kink mode occurs after each crash as 
without MPs. The only apparent effect of MPs in this case is a 
moderate temporal modulation in the amplitude and period of 
sawteeth, in particular with larger sawtooth cycles following 
milder ones and vice-versa.

Why does sawtooth mitigation not occur for the φ∆ = 0 
simulation case? After all, the vacuum ˆ /

ρ
b1 1 profiles turn out to 

provide a similar core 1/1 perturbation in the two numerically 
investigated MP cases, so that a comparable effect on saw-
teeth would be expected. The qualitative difference between 
the two cases can actually be understood by considering 
m  >  1 harmonics. As shown in the figure, a significant RFA 
of applied MPs takes place for φ∆ = 0 like in the previous 
case with φ π∆ = . However, here the RFA effect is such that 
m  >  1 harmonics of ˆρb  have opposite signs with respect to the 
previous case. This is observed both in the temporal evolution 
of resonant ˆ /

ρ
bm 1 amplitudes and at the two selected times when 

RFA has reached steady-state. The 2/1 harmonic in particular 
is characterized by a broadly positive ˆρb  profile, whereas it 
was negative for φ π∆ = . The O-points of the 2/1 island 
chain in the Poincaré plots at fixed toroidal angle are accord-
ingly located on the equatorial plane instead of being above 
and below the core region as before. We can now explain the 
lack of sawtooth mitigation for φ∆ = 0 as a competitive effect 
of the 1/1 and 2/1 harmonics of the applied MP. Indeed, the 
positive applied 1/1 harmonic is forcing the 1/1 island to grow 
on the left of the original magnetic axis like in the φ π∆ =  
case. But now the applied 2/1 harmonic is also positive, which 
would induce by inverse toroidal coupling a negative core 1/1 
harmonic (because of the natural phase relation between the 
1/1 and 2/1 harmonics, identified in the reference case without 
MPs) corresponding to a 1/1 island on the right-hand side of 
the magnetic axis. Overall, the opposite effects of 1/1 and 2/1 
harmonics of the applied MP cancel each other and the saw-
tooth dynamics of the internal kink mode stays close to the 
spontaneous one. On the other hand, in the φ π∆ =  case the 
opposite sign of 1/1 and 2/1 harmonics of the applied MP is 
consistent with their natural phase relation, and the sawtooth 
mitigation effect is efficiently achieved by the cooperative 
action of the two harmonics.

Figure 5. 3D simulation with applied n  =  1 MPs with φ∆ = 0. The opposite action of m  =  1 and m  =  2 harmonics prevents sawtooth 
mitigation. Same quantities are reported as in figure 4.
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Physics applications of PIXIE3D resistive MHD solver

Resistive PIXIE3D has been applied to reconnection and MFE (RFP, tokamak, stellarator)
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3D extended MHD implicit solver
L. Chacon, in preparation

Luis Chacon, chacon@lanl.gov



Extended (two-fluid, Hall) MHD model equations
(vector potential form)

∂ρ

∂t
+ ∇ · (ρ~v) = 0,

∂~A
∂t

+ ~E = −∇φ ; ~B = ∇× ~A , φ = −d2
e

di

v2
e

2
(Gauge)

∂(ρ~v)
∂t

+∇ ·
[
ρ~v~v− ~B~B +

←→
Π i +

←→
I (p +

B2

2
)

]
= 0,

∂pe

∂t
+∇ · (~vpe) + (γ− 1)pe∇ ·~v = (γ− 1)(S−∇ ·~q).

~v = mi~vi+me~ve
mi+me

≈ ~vi ; ~ve = ~vi − di
~j
ρ

Ohm′s Law : ~E = −~v× ~B + η~j− di
ρ (
~j× ~B−∇pe −∇ ·

←→
Πe )−d2

e
di

d~ve
dt
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Extended MHD Jacobian block structure

~E = −~v× ~B + η~j− di
ρ (
~j× ~B−∇pe −∇ ·

←→
Πe )−d2

e
di

d~ve
dt ;
←→
Πe = −ρνe∇~ve ≈ ρdiνe∇(

~j
ρ)

• Linearized induction equation δ~B = −∇× δ~E has the following couplings:

δA = LB(δA, δv, δρ, δpe)

• Jacobian coupling structure:

Jδx =



Dρ 0 0 Uρv

Lpρ Dp UpA Upv

LAρ LAp DEMHD UvA

Lvρ Lvp LvA Dv




δρ

δpe

δ~A

δ~v


• We have added off-diagonal couplings and stiff time scales to block M, which in principle

complicates block-factorization approach.

• However, all except DEMHD are trivial (disappear in homogeneous plasma); DEMHD contains

whistler wave.
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Extended MHD preconditioner

• Consider approximation (neglect Joule heating source):

J ≈ P =

[
M U

L Dv

]
; M =


Dρ 0 0

Lpρ Dp 0

LAρ LAp DEMHD


• Use same block factorization approach:

δ~y ∗ = −M−1 Gy

δ~v ≈ P−1
SI [−Gv − Lδ~y ∗] ; PSI = Dv − ∆tLU

δ~y ≈ δ~y ∗ − ∆tUδ~v

• M block now contains whistler time scales.

– First M−1 solve (via DEMHD inversion) addresses electron stiff time scales by operator

splitting.

– Subsequent solves address ionic timescales, and approximation M−1 ≈ ∆t is sufficient.
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Inversion of EMHD block (DEMHD)

• DA block contains EMHD electron physics:

DEMHDδA =
δA∗

∆t
− θ

ve,0 ×∇× δA∗ − di
∇×∇× δA

ρ0
× B0︸ ︷︷ ︸

Whistler

−η∇×∇× δA +∇ ·
[

ρ0diνe∇
(
∇×∇× δA

ρ0

)]
︸ ︷︷ ︸

Hyperresistivity


δA∗ = δA +

d2
e

ρ0
∇×∇× δA

• Hyperresistivity is a 4th order operator on δA of mixed character.

– We do NOT use Coulomb gauge ∇ · A = 0, so ∇×∇× cannot be replaced by −∇2 in

general.

• It is needed to provide a dissipation length scale to dispersive waves ω ∼ k‖k.
• We have implemented this in MG by considering 2 second-order vector systems:

1
∆t

(
δA + d2

e
δj
ρ0

)
− θ

(
ve,0 ×∇×

(
δA + d2

e
δj
ρ0

)
− di

δj
ρ0
× B0 − ηδj +∇ ·

[
ρ0diνe∇

(
δj
ρ0

)])
= rhs

δj−∇×∇× δA = 0

– Well defined set of boundary conditions for δj (critical; not the case for B formulation)

– Block smoothing in MG (critical)

– Used ∇×∇× ⇒ −∇2 in block diagonal inverse for smoothing step (critical)
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2D nonlinear verification: GEM challenge
PIXIE3D vs. HiFi (V. Lukin, A. Glasser)
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Extended MHD performance results (GEM challenge)

di/Lx = 1/12.8, η = νi = κ = 5× 10−4

100 time steps, ∆t = 0.01, 1 V(4,4) MG cycle

np mesh νe
∆t

∆texp
GMRES/∆t Newton/∆t WCT(s) WCT/PC

1 32× 32 10−4 1.0 2 2 174 43.5

4 64× 64 2.5× 10−5 2.1 2 2 214 53.5

16 128× 128 6.3× 10−6 8.2 2 2 298 74.5

64 256× 256 1.6× 10−6 170 7 3.8 1030 95.4

256 512× 512 3.9× 10−7 130 3.2 2.4 648 115.7

1024 1024× 1024 9.8× 10−8 520 2.9 2.4 961 181.3

4096 2048× 2048 2.4× 10−8 2100 4.1 2.7 1350 198.5

• Grid-bound νe to avoid unnecessary 4th-order operator stiffness: νe ∝
divAk‖

k3

• Implicit algorithm WCT increases by 8 from 1 to 4096 cores; explicit algorithm WCT would

increase by 4096 from quadratic CFL!
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Conclusions

• Developed a scalable, multilevel-based, fully implicit NK-MG solver for the 2D low-β and 3D

primitive-variable extended MHD models.

Key algorithmic breakthrough: PARABOLIZATION + MG.

• Demonstrated excellent algorithmic performance under grid refinement and with time step.

• Demonstrated excellent parallel performance.

• Used the 2D low-β tool to explore fast magnetic reconnection physics with large guide fields:

– Fast reconnection is characterized by being independent of both dissipation and system size

– We have demonstrated that fast reconnection is ubiquitous in all extended low-β regimes

(de, ρs 6= 0) (a new result)

– We have found excellent agreement between fluid and kinetic simulations, qualitatively and

quantitatively (a new result)

• The 3D resistive MHD tool has been used to model RFP, Tokamaks, and currently being adapted

for stellarators

• The 3D extended MHD tool has been used mainly in magnetic reconnection studies, and is

currently being extended to toroidal geometry.
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