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Status of Six-field Two-fluid Models in 
BOUT++ 
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Six-field two-fluid model is necessary to describe:
 pedestal energy loss 
 density profile evolution through the ELM event, 
 heat flux 
 energy depositions on divertor target
 Edge turbulence

Six-field (ϖ, ni, Ti, Te, A||, V||): based on Braginskii equations, the 
density, momentum and energy of ions and electrons are 
described in drift ordering[1,2]. 

[1]X. Q. Xu et al., Commun. Comput. Phys. 4, 949 (2008).
[2]T. Y. Xia et al., Nucl. Fusion 53, 073009 (2013).
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Equations of 6-field 2-fluid model
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Compressible terms

Parallel velocity 
terms

Electron Hall 

Thermal force

Gyro-viscosity 

Energy exchange 

Energy flux

Thermal conduction



Multi-field two-fluid model in BOUT++
The background impurity is taken into account in 

order to use full set of measured profiles
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The vorticity equation with background impurity is modified to 

The effects of impurity: all the terms are at 
the order of mimnim

Gyro-viscous

Quasi-neutral condition



The physics switches of 6-field model in BOUT++
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Switch Name Physics meanings

compress0 Parallel velocity

continuity Compressible terms

eHall Electron Hall effects

energy_flux Energy flux terms

energy_exch Energy exchange terms

thermal_force Thermal force terms

gyro_viscous Gyro-viscosity

viscos_par Parallel viscosity

spitzer_resist Spitzer resistivity

hyperresist Hyper resistivity

diffusion_par Thermal conduction

experimental_Er Using measured Er

impurity_prof Including the background 
impurity
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Boundary conditions and normalizations

Boundary conditions:
Inner boundary:

Outer boundary:

Normalizations:



3-field  2-fluid model is good enough to simulate P-B stability 

and ELM crashes, additional physics from multi-field contributes 

less than 25% corrections

Power depositions 

on PFCs.

Turbulence and 

transport
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 Fundamental physics in ELMs: 
 Peeling-Ballooning instability
 Ion diamagnetic stabilization 

 kinetic effect
 Resistivity and hyper-resistivity 

 reconnection

 Additional physics:
• Ion acoustic waves
• Thermal conductivities
• Hall effect
• Compressibility
• Electron-ion friction

change the linear 
growth rate less 
than 25%
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Benchmark with ELITE and 3-field mode in 
BOUT++

For a typical peeling-ballooning mode 
unstable equilibrium:
 Ideal MHD, the growth rate is well 

consistent with ELITE.
 Full 6-field mode gives smaller 

growthrate than ideal MHD, mostly 
due to FLR effects. 

 Higher than 3-field model w/ 
diamagnetic effects, most due to 
electromagnetic drift wave instability 

2. JET-like stronger P-B unstable1. JET-like weaker P-B unstable
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Benchmark with drift Alfven modes

 The dispersion relationship of drift Alfven 
mode is:

 The analytical results are shown on left:

analytical

6-field simulation

 Drift Alfven mode is included in 6-field 
model under switch eHall.

 Within the similar parameters, 6-field 
model obtains the similar results on both 
growthrate and frequency for resistivity 
scan.

*J.F. Ma, PhD. Thesis



Multi-field two-fluid model in BOUT++The background impurity can stabilize the 
ballooning mode
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 If w/ both diamagnetic effects and 
gyro-viscosity, the growth rate for 
whole n is stabilized by impurity by 
~12%, more effectively.

If the density profiles is kept unchanged
 The effects of impurity: decreasing the 

low-n ballooning modes by ~14%.
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The effects of background impurity (carbon): can be treated as the change of mass 
density.
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Grid file used in linear simulation: DIIID H-mode 
discharge #144382 from 2500ms
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From experiments, this discharge is a small 
ELM crash event detected with multiple fast 
acquisition data chords in the pedestal, 
scrape-off layer (SOL) and divertor. This ELM 
produced a drop in the plasma stored energy 
of 2% (17 kJ from a 0.8 MJ plasma)*.

The characteristic of #144382:
The lower single null geometry
A low triangularity (δ=0.35)
βN=1.9                                 fELM=150Hz
Ip=1.16MA q95=4.0

separatrix

*M.E.Fenstermacher, et al. 40th EPS Conference on Plasma Physics, P4.104.

Profiles used in the simulations are derived 
from measurements.



This discharge is ideal MHD stable, but resistive 
ballooning unstable
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Linear growth rate shows that 
#144382 is ideal stable for ideal 
peeling-ballooning mode. The 
instability is excited by resistive 
ballooning mode.

Profiles used in the simulations are derived 
from measurements.
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Equilibrium thermal conductivity

Flux limiting coefficients describe the kinetic modification 
to Spitzer-Harm-Braginskii thermal conduction
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αj
 Flux limiting coefficient αj represents the ratio of the 

Spitzer-Harm-Braginskii expression for parallel heat flux 
vs. free streaming flux. 

 The typical range of αj is [0.03, 3.0]*

* P.W. Fundamenski, Plasma Phys. Controlled Fusion 47, R163 (2005).

 For DIIID #144382, κ||j are dominated by the flux 
limited expression because of low collisionality, 
especially inside the separatrix.

νe*=0.127            at ψN=0.8
νe*=1.616            at pressure gradient peak

 Three different αj are discussed in our simulations:
αj=1.0:         free streaming limit
αj=0.05:       sheath limit
αj=0.1:         intermediate

 How to determine the value of αj:
 The free streaming limit:

 The sheath limit:         
-- should be chosen for divertor simulations                                                        

αj=1.0

αj=0.1αj=0.05



Thermal conduction stops the crash of the profile 
from peak gradient to inner boundary 
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 The temperature profile is the most 
sensitively affected by αj.
• Peak gradient region: larger αj leads to 

larger crash of profile
• Pedestal top: larger αj  leads to smaller 

differences from equilibrium 
 The crash of the density profile is affected 

the least.

t = 267μsdensity

Ti

Te



Particle fluxαj=1.0

αj=0.1αj=0.05

Solid: convective flux
Dashed: flutter induced flux

ion heat flux

Solid: convective flux
Dashed: conductive flux

αj=1.0
αj=0.1

αj=0.05

Radial conductive flux is negatively correlated with αj, 
while radial convective flux is positive correlated

19

αj=0.1

electron heat flux

Solid: convective flux
Dashed: conductive flux

αj=1.0

αj=0.05

 The convective flux is the dominant component of 
the radial particle and ion heat fluxes.

 The larger ɑj leads to the larger radial fluxes, for 
both convective and conductive.

 For free streaming limit , the radial electron heat 
flux is almost averaged to convective and 
conductive components.

 The radial flux outside ψN~1.05 is 2 magnitude 
orders lower than that at the separatrix.



αj=0.1

αj=0.05

αj=1.0

The radial distributions of heat flux on targets 
are dramatically affected by αj
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 The amplitude of the heat flux on targets:
• Outer target: q(αj=1):q(αj=0.1):q(αj=0.05) = 6.25873 :1.37994: 1
• Inner target: q(αj=1):q(αj=0.1):q(αj=0.05) = 6.31188 :2.35807: 1

 The larger αj leads to wider expansion of the heat flux on targets.
 Compared to DIIID diagnostics, the sheath limit of αj is the most reasonable 

coefficients to simulate the H-mode heat flux on divertor target. 

αj=0.05

αj=0.1

αj=1.0

ΨN=1.025

Dashed lines are inner target, solid curves are outer target.
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The sheath limit model for flux-limiting obtains 
ELM size close to the experiments 

The simulated ELM size under sheath limit parallel conduction with αi=0.05 is 
around 2.2%, which is very close to the experimental measurement with 2*.

*M.E.Fenstermacher, et al. 40th EPS Conference on Plasma Physics, P4.104.
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The comparison of the density profiles between 
simulations and measurements
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Measured form DIIID diagnostics.

The simulations for density. 
• The ELM crash event are well described 

by the simulation. 
• The red curve shows the similar 

expansion of the density profile crash 
with the measurement at the same 
time. 

ELM start

tELM +0.29ms

tELM +0.35ms

*M.E.Fenstermacher, et al. 40th EPS Conference on Plasma Physics, P4.104.



The comparison of the heat flux profiles between 
simulations and measurements
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Heat flux measured from experiments*.

 Heat fluxes from simulations show the 
comparable expansion on targets. 

 Compared to the measurement, the 
amplitude is 2x times larger due to the lack of 
radiation and recombination by neutrals and 
impurities.

*M.E.Fenstermacher, et al. 40th EPS Conference on Plasma Physics, P4.104.

Due to reflections in the IRTV, which 
have been significantly reduced in the 
2013 DIII-D campaign.
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The evolution of the toroidal structure of Te at 
outer mid-plane during the burst of ELM
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The heat flux distribution on the toroidal plane 
at t = 400μs

Inner outer

outer mid-
plane
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Multi-field two-fluid model in BOUT++Magnetic flutter in parallel thermal conduction

The magnetic flutter induced 
thermal conduction. They can 
enhance the radial transport in 
pedestal and SOL.

28



Multi-field two-fluid model in BOUT++The magnetic flutter enhance radial transport, 
then leads to larger Energy loss and heat flux

 More energy loss is due to magnetic flutter. 
 At the linear phase, the growing of the 

perturbation is seldom affected.

 Wider spreading of heat flux to targets, but larger peak value.
 Less difference between inner and outer targets with flutter.

29
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Magnetic flutter terms are able to broaden 
wetted length especially at the inner target

During ELM crashes at outer target:
 λw is broadened by 2.7 times due to the burst of ELM w/o flutter.
 λw is broadened by 1.6 times due to the burst of ELM w/ flutter.
After t=0.1ms,
 At inner targets, flutter increases the width of the heat flux by ~50%.
 At outerer targets, the width is increased by ~6%.

Wetted length: 



The magnetic flutter terms are able to generate longer and 
wider lobe structures near the outer target
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w/ flutterw/o flutter

v v

Lobe structure 
is shorter

Lobe structure 
is longer
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The setup of EAST simulations
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The simulation domain prepared for 
our simulations. It is based on EAST 
ELMy H-mode discharge 38300 at 
3000ms.

The fitted pressure profile, measures Te and Ti are 
used as the input of simulations.  

1st separatrix

2nd separatrix



Energy loss shows a small ELM event for this 
discharge 
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 The energy loss during the ELM is around 260J 
and ELM size is around 0.5%.

 The power loss is around 0.8MW, which is 
consistent with

 At this point, the ELM size is mainly 
contributed by the energy loss of ions.

 The energy loss of electrons are increasing and 
exceeds the particle loss of ions.
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The power loss is 
consistent with the 
EAST LHCD power loss



The radial heat fluxes get faster increased 
outside the separatrix

35

ion
electron

 The peak of the radial heat fluxes are just 
changed by 1 order of magnitude during the 
time form 0.14ms to 0.2ms. 

 The outside of the separatrix are increased by 
nearly 2 orders of magnitude.

 This faster increase of the fluxes leads to the 
jump of the energy loss on walls.

 The energy loss on targets does not show the 
ELM burst event, because it will take Lc/vth

~0.06ms to reach the divertors.

Flux to divertor
Flux to ψN=1.05



t=0.17ms t=0.2mst=0.14mst=0.1ms t=0.22ms

The nonlinear filaments are determined by the 
dominant mode n=5, which leads to the ELM burst 
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n=15 n=5 n=0 n=5 n=5



The profiles are keeping relaxed during the ELM burst 
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t=0ms
t=0.14ms
t=0.17ms
t=0.2ms

t=0ms
t=0.14ms
t=0.17ms
t=0.2ms

t=0ms
t=0.14ms
t=0.17ms
t=0.2ms

t=0ms
t=0.14ms
t=0.17ms
t=0.2ms
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Particle flux distributions on upper and lower 
divertor targets are computed by 6-field model

Normal BT: more particle flux on upper outer target 
Reversed BT: more particle flux on lower outer target 

*B.N. Wan et al., Nucl. Fusion 55 (2015) 104015
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Heat fluxes on upper and lower targets show the 
similar amplitudes

EAST measurements* BOUT++ simulation

Both experiments and BOUT++ simulations show the symmetric distribution of heat fluxes 
on upper and lower targets.

*H.Y. Guo et al., Journal of Nuclear Materials 463 (2015) 528–532.
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Summary

 6-field 2-fluid module in BOUT++ is developed to simulate the heat flux evolution 
during ELMs within real tokamak H-mode discharge parameters.

 In DIIID H-mode discharge #144382, the parallel conduction is dominant by free 
streaming because of low collisionality. 
• Discussions of the effects of flux limiting coefficients ɑj : free screaming limit and 

sheath limit in H-mode simulations
 The larger ɑj leads to the larger conductive flux, but smaller convective fluxes. 

because more energy are deposited to conductive flux by larger thermal 
conduction.

 Compared to DIIID diagnostics, the sheath limit of αj is the most reasonable 
coefficients to simulate the H-mode heat flux on divertor targets. 

 The magnetic flutter is effective to broaden the heat flux width on targets.
• Within the sheath limit thermal conduction, our simulation shows the consistent 

energy loss, profile crash and heat fluxes with DIIID diagnostics.
 The simulations gives the consistent asymmetric distribution of particle fluxes and 

symmetric heat fluxes on divertort targets to the EAST experiments.
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Simplified 6-field model in BOUT++
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Parallel velocity 
terms

Parallel viscosity

Hyper resistivity

Thermal conduction

Switch Name Physics meanings

compress0 Parallel velocity

viscos_par Parallel viscosity

spitzer_resist Spitzer resistivity

hyperresist Hyper resistivity

diffusion_par Thermal conduction
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6-field model in BOUT++ (cont.)

Definitions:

Flux limited expression for parallel thermal conduction: 
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Boundary conditions and normalizations

Boundary conditions:
Inner boundary:

Outer boundary:

Normalizations:
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Density profile as the input

Density profile used in 6-field model:

The coefficients in BOUT.inp:
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Compiling and running of 6-field module 

Compiling:
Set the environment first, then
> make

Go to the scratch directory to run the code:
> cd $SCRATCH 
> cp –r $BOUT_TOP/examples/6field-simple/ .
> cp $BOUT_TOP/examples/6field-simple/ 
cbm18_dens8.grid_nx68ny64.nc .
> cd 6field-simple/
Edit the pbs file with:
#PBS –l advres=bout.10

Submit job and run the job:
> qsub bout_hopper_debug.cmd

Data post-processing:
Add the idl library directory first
IDL> !path=!path+":$BOUT_TOP/tools/idllib”
IDL> @collect-all

Variables after the collecting

For the exercise, a simple linear test is prepared:
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The output of the mode structure (1)

ni Ti

Te Vi||

Linear growth rate and radial 
mode structures

Poloidal mode structures

n0_height = 0.0
n0_ave = 0.2

Linear growth rate for this test case:
IDL> print,gr[-1]

0.202673
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The output of the mode structure (2)

ni Ti

Te Vi||

Linear growth rate and radial 
mode structures

Poloidal mode structures

n0_height = 0.364
n0_ave = 0.2

Linear growth rate for this test case:
IDL> print,gr[-1]

0.183418
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The output of the mode structure (3)

Linear growth rate and radial 
mode structures

Poloidal mode structures

ni Ti

Te Vi||

n0_height = 0.6
n0_ave = 0.2

Linear growth rate for this test case:
IDL> print,gr[-1]

0.166440
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Backup slides



52

Nonlinear comparison with 3-field model

 For weaker P-B unstable equilibrium (1), both three-field and six-field models show the 
consistent results at linear and nonlinear phases. 

 In stronger P-B unstable equilibrium (2), while additional terms of six-field do enhance 
the instability. 

 The six-field model yields smaller ELM size than 3-field model in both equilibria.



Multi-field two-fluid model in BOUT++The magnetic flutter enhance radial transport

ion

electron
 Radial particle flux and heat fluxes are all 

enhanced by magnetic flutter
 More effective on ion heat flux than electron.
 The effects of magnetic flutter are mainly on 

the ExB induced fluxes
 The non-consistent calculation of conductive 

fluxes are similar to the consistent one, 
especially near the separatrix. 
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Simulations show the filaments of ELMs and heat 
load strips on targets
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