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Seeking to Identify Fundamental Processes and Instabilities in 
the Edge of Tokamak (or other!) Plasmas
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• Observations of edge plasma behavior 
reveal wide array of interesting and 
important phenomena

• Understanding and extrapolating will 
require close interaction of experiment, 
theory and simulation
– Test, challenge, refine models

• Goal: Identify experimental observations 
that perhaps can be explained through 
BOUT++ simulation
– Aid improvement and ultimately validation (or 

rejection) of various models for edge 
turbulence

• Interpret, Understand, Extrapolate Physics 
behind observations

Can we identify ballooning modes 
(kinetic, resistive, current diffusive...)
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BOUT++ Simulations can Elucidate Physics Behind Several 
Specific Edge Experimental Observations

• L-H Transition physics
– Nature of L-mode turbulence approaching the transition

– Identifying trigger mechanism

– Understanding threshold behavior: BT, ne, A, VTOR, boundary shape

• H-Mode Pedestal Instabilities
– Inter-ELM evolution: coherent and broadband structures, saturation

– Edge Harmonic Oscillation, High-Frequency-Coherent Modes (QH plasmas)

– Quasi-Coherent Mode (EDA plasmas on C-MOD)

• ELM Dynamics
– Precursors

– Nonlinear evolution

• ELM Suppression methods
– Radial Magnetic Perturbations, turbulence, transport, pedestal stability

• Intrinsic rotation

• Blob Dynamics: Density scaling, particle transport

• IP scaling of SOL width, implications for ITER
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Pedestal Profiles Well Characterized via Multiple Diagnostics

• Charge Exchange 
Recombination Spectroscopy
– Ti, VTOR, VPOL, nc, Er

• Thomson Scattering
– ne, Te

• Electron Cyclotron Emission
– Te

• Lithium Beam Spectroscopy
– Current density (*challenging!)

• Motional Stark Effect
– Pitch angle/current density

• Gradients measured via time-
averaging, phase-averaging
– Crucial for simulations
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Fluctuation Diagnostics Measure Multiple Fields at Relevant 
Temporal, Spatial and Wavenumber Resolution

• Reciprocating probes

– ne, Te, ϕ, Er, Mach #, 

– Reynolds Stress (low/med-k)

• Beam Emission Spectroscopy
– n (2D), VPOL, (low-k)

• Correlation Reflectometry
– n, correlation lengths, (low/med-k)

• Doppler Backscattering
– n, Vpol (low/med-k)

• ECE Imaging
– Te (low-k)

• Gas-Puff-Imaging
– ne, (Te)(2D, low-k)

• UF-CHERS
– Ti, VTOR (low-k)

• Polarimetry (n, B)
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Identifying the L-H Transition Trigger Mechanism

• Substantial progress in detailed investigations of L-H process
– Observe critical changes in phase leading up to transition

• Theoretical mechanisms proposed
– Predator-prey model

– Mean-shear flow

• Strong dependencies on macroscopic parameters

• BOUT++ simulations can help unravel the physics behind these 
observations

• Apply same analysis techniques to simulation and experimental 
data
– Nevins tools

– 2D data readily affords opportunity for detailed dynamical investigations of 
velocity, energy transfer, cascades

• Inferred flow field reveals ZF, GAM, turbulent fluxes...

– Quantitative comparison with nonlinear simulations
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Limit Cycle Oscillations During L-I-H Demonstrate Predator-Prey 
Relationship between Turbulence and Zonal Flows

• Transfer of energy from turbulence to 
zonal flows
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Evolution of L-Mode Edge Plasma Towards L-H Transition

• Emerging picture of turbulence/flow evolution:
– Increasing power flux across separatrix: increased 

turbulence, ñ/n, just inside separatrix

– Increasing turbulence alters and increases Reynolds 
stress drive

– Increasing RS drives increased zonal flow

– Transfer of internal energy from turbulence to ZF

– ZF shearing rate increases, competes with 
turbulence decorrelation rate

•  L-H Transition!
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L-H Power Threshold Depends on Numerous Parameters

• Known knowns: 
– Density, toroidal field, surface area, isotope mass

• Known unknowns:
– Toroidal velocity, 

– Magnetic geometry: ion ∇B drift, SND/DND, triangularity, X-point height,

– Plasma current

– Magnetic perturbations (RMP)

• Unknown unknowns: 
– Wall material (C, Be/W, Li)

• JET ILW

• NSTX

– ??
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PLH = 0.042n20
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known unknowns, and unknown 
unknowns...” - D.R., 2002
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Why does PLH Increase with Toroidal Rotation?

• Found on DIII-D that PLH increases with toroidal rotation in plasmas 
with ion ∇B drift directed towards and away from X-point
– PLH continues to reduce with counter-injection

• Equilibrium and turbulence-flow effects play a role
– Er and Er’ increase at lower rotation

• Competition between vTOR and pressure gradient terms

– Turbulence mode structure and zonal flow/GAM behavior favors transition at 
lower rotation
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Why does PLH Increase with Toroidal Rotation?

• Combination of equilibrium and turbulence/zonal flow effects
– Multiple turbulence bands sometimes observed in near edge region

• Suggests different underlying instabilities co-existing
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Questions on L-H Transition Physics

• Can the Limit-Cycle-Oscillation be reproduced via simulation?

• Can a “conventional” (single step) L-H transition be simulated?
– What characteristics of the L-mode turbulence differ between a plasma far 

from L-H vs. one on verge of L-H transition?

• What determines dependencies on global parameters?
– Appears to result from a strong interplay between edge and SOL 

turbulence and flows

• What governs hysteresis and back-transition physics?
– Impacts operational scenarios (inductance, power supply requirements)

• Can methods to reduce PLH be identified?

• BOUT++ capability to include full diverted, shaped magnetic 
geometry and interaction of edge and SOL turbulence and flows is 
key strength

12



G. McKee - BOUT++ Workshop - September 3-6, 2013 (Livermore, CA)13

H-Mode Pedestal Physics
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Do Broadband Pedestal Fluctuations Reflect 
Pressure Gradient-Limiting Instabilities?

• Two counter-propagating fluctuation bands observed near 
maximum pressure gradient in ELMing H-Mode
– one in electron diamagnetic direction, one in ion

– Strong spatial dependence

• Amplitude increases rapidly then saturates during inter-ELM phase

• Behavior consistent with expectations for KBM-type modes (low-f)
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Z. Yan, Phys. Plasmas (2011)
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Pedestal Turbulence on NSTX Exhibits Clear Dependencies on 
Local Parameters and Gradients

• Relations between specific turbulence characteristics (Lcr, k, tc, ñ/n) 
determined from multiple-shot database
– Correlation length exhibits positive scalings with: 

• Density gradient, Te gradient, collisionality, pedestal density

– Negative correlations with: Ti, grad-Ti, grad-Vt

• Most consistent with TEM-driven turbulence
– Somewhat consistent with KBM, micro-Tearing-mode

– Least consistent with ITG-driven turbulence

• Qualitative consistency with GEM simulations

• Initial BOUT++ simulations (Braginskii) haven’t captured relations 
– Could be related to specific model chosen
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D. Smith, PoP (2013)
(poster this workshop)

BES Measurements of 
pedestal turbulence
- similar for k, tauc 

Lc scalings
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Explain the Growth and Nonlinear Evolution of ELMs

• Why are precursors 
evident in some plasma 
conditions, not others?
– Coherent oscillations, can 

persist for many ms

• Why does ELM size and 
frequency depend on 
collisionality, edge 
parameters?
– Evolution from low-n peeling-

ballooning mode to 
medium-high-n? KBM?

•
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What is Underlying Instability Behind the EHO and how Does It 
Prevent ELMs?

• Multiple harmonics (>10) observed

• Localized to pedestal vicinity

• Quasi-steady, ELM-free
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Do High-Frequency Coherent Modes Reflect
Kinetic Ballooning Mode Instability?

• Observed in high pedestal-pressure 
QH-mode plasmas

• Exhibit several features predicted for 
kinetic ballooning modes:
– Frequency: 80-250 kHz

– Dominant n-modes: 10-20

– Propagate in ion diamagnetic direction

– f~0.2-0.3 fDIA 

– High decorrelation rates (~ωs)

• Coincide with saturation of pedestal 
pressure

• Understanding the transition from EHO-
dominant to HFC-dominant pedestal 
may aid achievement of high-
performance ELM-free regimes

18

Yan, PRL (2011)
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How Do Resonant Magnetic Perturbations Suppress ELMs?

• RMP successfully suppress ELMs in certain operational regimes
– DIII-D: low to moderate collisionality, resonant q-profile (q95~3.5 for n=3)

– AUG: high density, non-resonant condition (ELM mitigation)

• RMP increase transport in pedestal (and core)
– Density pump-out

– Reduction in toroidal rotation

– Energy confinement reduction (usually)

• Pedestal operational point reduced below P-B stability threshold
– Reduced pressure height

• Main questions:
– Why do RMPs increase transport?

• Increased turbulence?

• Magnetic flutter?

– How is pedestal growth arrested?
• Magnetic islands?

• Effects of plasma screening
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How Does Increased Turbulence Affect Pedestal Stability?

• Turbulence increases significantly 
across outer plasma with application 
of RMP field
– Most significant just inside pedestal

• Responds rapidly to modulated fields
– Faster than local gradients/parameters

• Connected with increased transport
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Shape Matters! How does the Tail Wag the Dog? 

• Modest changes to plasma 
“squareness” shaping parameter 
dramatically alter core 
performance:
– Increases turbulence

– Increases ion thermal transport

– Reduces confinement

• Pedestal height also impacted

• Can we determine underlying 
causes for transport and pedestal 
variations with shape?

• Can more optimized shapes be 
developed via simulation?
– A la “Super-H” - P. Snyder

21

 134220 134221

0.0 0.2 0.4 0.6 0.8

134220

134219

1.0

reffective (m2/s)

0
1
2
3
4
5
6
7

Minor Radius (l)

c =   0.0
c = - 0.25

Low
Squareness

(Good!)

High
Squareness

(Bad!)

C. Holcomb, PoP (2009)



G. McKee - BOUT++ Workshop - September 3-6, 2013 (Livermore, CA)

A few other interesting and important topics ...

• What is the torque source for intrinsic rotation?
– C-MOD, DIII-D other machines have seen large “intrinsic” (external 

torque-free) toroidal rotation

– Scalings differ markedly, major impacts on ITER

– What is the mechanism?
• Thermal ion loss near X-point creates radial electric field

• Turbulence-driven Reynolds stress 

• Why does the Scrape-Off-Layer Width Scale with IP?
– Projections indicate ITER SOL width at midplane ~1-2 mm

– Extremely high local power flux

• Scaling of “blobby” transport with density
– Implications for L-mode transport in ITER/BP operating near max. 

density
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Summary

• Greater understanding of experimentally observed behavior will increase 
confidence in extrapolating the physics to ITER and burning plasmas

• Several experimental observations warrant fundamental understanding
– L-H transition physics: trigger, parametric dependencies

– Pedestal instabilities: coherent, broadband fluctuations

– ELM-free operation: Edge Harmonic Oscillation (QH), Quasi-Coherent Mode (EDA)

– Nonlinear ELM evolution, collisionality dependence

– Resonant Magnetic Perturbation ELM-suppression mechanism

– Shaping effects

– Intrinsic rotation

• Strengths of BOUT++ in simulating turbulence, transport and flows, in 
realistic shapes and accounting for edge/SOL interactions can greatly 
benefit  experimental investigations to understand behavior and optimize 
performance
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Quantitative Comparisons of Edge Measurement Phenomena 
Will Advance Validation of Simulations and Reveal Physics

• Extrapolate current knowledge to ITER and Burning Plasmas
– ITER will most likely have significantly less capability to measure detailed edge 

and pedestal phenomena given harsh environment and diagnostic limitations

• Focus on experimentally observed phenomena that are:
– Unexpected theoretically

– Important (possibly...) 

– Scientifically interesting

– Fun!

• What would we like to measure vs. what we can measure
– Diagnostics: finite spatial, k-resolution, limited signal-to-noise

– Simulations: computational time, mesh-size, “plasma” time

– Using synthetic diagnostics for quantitative comparison (C. Holland)

• What can the experimental community learn from BOUT++ simulations?

• What new measurements would be desired by theory and simulation 
community?
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