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Summary 

•  Dynamical systems theory, bifurcation theory, and choas theory along with general 
analysis techniques from the field of hydrodynamics are useful in the field of plasma 
fluid analysis. 
 
•  Plasma turbulence is either low or high dimensional chaos. If it is low dimensional, 
phase space orbits can be reconstructed from a single experimental or simulation time 
signal.  Permutation entropy analysis is one way to test the dimensionality and to 
inform the construction of the phase space orbits. 
 
•  Proper Orthogonal  Decomposition (POD) uses full spatio-temporal simulation data 
to establish the most important modes of a dynamical system. It can be used to 
determine the effective dimensionality of turbulence. 
 
•  If plasma turbulence is high dimensional chaos, many modes are involved. Mode-
decomposed energy dynamics analysis that uses the equations and spatial information 
from simulations can determine which modes inject energy, which dissipate it, and 
which act passively. Different choices of basis functions including Fourier modes, linear 
eigenmodes, and POD modes can be used in the analysis. 
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Method of Time Delays: Reconstructing the Phase Space 
Trajectories with Experimental Measurements 

Dynamical System: Xk+1 =F(Xk); k = 0;1;2; : : :

Experimental measurement projection: Wk =W(Xk)

Under the mapping F :

W0 = W(X0); W1 = W(F(X0)); W2 = W(F(F(X0))); : : :

X0 can be speci¯ed by a series of projected measurements:

X0 = fW0;W1; : : : ;Wde¡1g ; Xk = fWk;Wk+1; : : : ;Wk+de¡1g

Any set of measurements can specify Xk

Xk =
©
Wk;Wk+¿ ; : : : ;Wk+(de¡1)¿

ª

¿ = subsampling time; de = embedding dimension ¸ 2df + 1

Bibitems: 7, 10  
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Time Delay Smoothly Reconstructs Phase Space Orbits 

Lorenz Model: _x = 10(x¡ y) _y = x(28¡ z)¡ y _z = xy¡
8

3
z

Bibitems: 7, 10  
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Permutation Entropy: A Measure of the Complexity of Time 
Signals and the Dimension of an Attractor 

Begin with time delay reconstructed vectors:

Xk =
©
Wk; Wk+¿ ; : : : ;Wk+(n¡1)¿

ª
; k = 0; 1; : : : ; N

Rank the components in each vector.

For example, f9; 3; 5g ! f3; 1; 2g

There are N = n! possible permutations

Determine the probability pj for each permutation, then,

the permutation entropy is Pn = ¡
PN

j=1 (pj log2pj)

Normalizations: hn = Pn=log2(n¡ 1)

Hn = Pn=log2(N); 0 · Hn · 1
Bibitems: 1, 8, 9, 10  
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Choosing the Optimal Subsampling Time  
and Embedding Dimension 

I. Redundancy Effect - points are too 
highly correlated 
 

II. Saturation - points become less 
correlated 
 

III. Irrelevance Effect - every point is 
uncorrelated from every other 
point 

• The optimal subsampling time is the first dashed line separating regions I and II. 
 
• The optimal embedding dimension (n) has maximum entropy at the first dashed line 

Bibitems: 10  
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LAPD Attractor Embedding Dimension Too High for 
Permutation Entropy Analysis 

• Total time  places a practical limit on the maximum embedding dimension. Need enough 
reconstructed vectors to fill out the probability distribution. 
 
• Permutation entropy and time delay reconstruction are limited to low-dimensional chaos 

Bibitems: 10  
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The Location of the Data in the Entropy-Complexity Plane is 
More Robust to Embedding Dimension than Entropy Alone 

CSJ =¡2
Pn

¡
p+pe

2

¢
¡ 1

2
Pn(p)¡ 1

2
Pn(pe)

N+1
N

log2(N +1)¡ 2log2(2N) + log2(N)
Hn(p)

pe is the probability distribution with maximum entropy: pj = 1=N

• Complexity is an information measure. It 
quantifies the amount of repetitive 
structure in a time signal 
 
• Lorenz and Gissinger are low-dimensional 
chaotic models 
 
• Fractional Brownian motion (fBm) is a 
stochastic model with high complexity 
 
• Chaotic and stochastic models occupy 
different places in the C-H plane 

Bibitems: 8, 9  
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The Proper Orthogonal Decomposition (POD) 

A(~ri; tj) =

NPODX

q=1

¾quq(~ri)wq(tj)

The energetically weighted data is put into matrix form and decomposed by 
Singular Value Decomposition 

Both spatial and temporal vectors are orthogonal: 
X

i

uq(~ri)ul(~ri) =
X

j

wq(tj)wl(tj) = ±ql

The POD is an optimal decomposition in that for the rank h truncation 

A
(h)

ij =

hX

q=1

¾quq(~ri)wq(tj)

jjA¡A(h)jj2 = min
©
jjA¡Bjj2

ª
; for rank(B) = h

E =
X

i;j

A2
ij =

X

q

¾2
q ; Eq = ¾2

q

Bibitems: 2, 5  
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The POD Entropy Measures the Stochasticity of the Data 

Entropy: Hq = ¡

NPODX

q=1

pqlog(pq)=log(NPOD) = 0:67

• Fast POD decay indicates fewer important modes. Gives low entropy. 
 
• First 58 POD modes constitute 90% of the LAPD turbulent energy. Too many for low-
dimensional chaos 

Bibitems: 2  
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Fourier-Decomposed Energy Dynamics 

The continuity equation
@N
@t

= ¡vE ¢rN0 ¡N0rkvke + ¹Nr
2
?N + fÁ;Ng

Potential energy of density °uctuations: 1
2
P0(N=N0)

2 = 1
2

T0

N0
N2

Fourier decompose the °uctuations (only in parallel and poloidal directions):

N(~r; t) =
P

m;n n~k
(r; t)eimµ+ikkz; ~k = (m;n); kk = 2¼n

Lk

P
~k

@n~k

@t
eimµ+ikkz =

P
~k

£
¡ im

r
@rN0Á~k

¡ ikkN0v~k
+ ¹Nr

2
?n~k

¤
eimµ+ikkz

+1
r

P
~k;~k0

¡
imn~k

@rÁ~k0 ¡ im0@rn~k
Á~k0

¢
ei(m+m0)µ+i(kk+k0

k)z

Multiply through by T0

N0
n¤~k00

e¡im00µ¡ik00
k z and integrate over space

1
2

D
T0

N0

@jn~k
j2

@t

E
=

D
¡ T0

N0

im
r

@rN0Á~k
n¤~k

¡ ikkT0v~k
n¤~k

+ T0

N0
¹Nr

2
?n~k

n¤~k

E

+
D

T0

rN0

P
~k0

³
im0n~k0@rÁ~k¡~k0n

¤
~k
¡ i(m¡m0)@rn~k0Á~k¡~k0n

¤
~k

´E

Bibitems: 3, 4, 5, 6  
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X

k;k0

Tj(k; k0) = 0;
X

j

Cj(k) = 0

Each Term has Meaning –  
Turbulent Drive, Energy Transfer, or Dissipation 

Energy Conservation Properties: 

•  Arakawa advection scheme conserves energy for any grid spacing 
•  Energy sources and dissipation do not conserve fluctuation energy  

 – exchange energy with background gradients 

@Ej(~k)

@t
= Qj(~k) + Cj(~k) + Dj(~k) +

X

~k0

Tj(~k; ~k0)

Dynamical Energy Equation Forms (for each field j) 

Free Energy 
Sources 

Axial compression 
transfer channel 

Dissipation Three-wave 
transfers 

Bibitems: 3, 4, 5, 6  
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Energy Dynamics Diagram Broken up  
Between n=0 and n!=0 Modes 

•  All summed over m 
•  n=0 separated from all n!=0, which are summed over 

Bibitems: 3, 4  
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POD Energy Dynamics Derivation 

Energy weight the data and put it into a vector, i.e. Hasegawa-Wakatani system:

E = 1
2

³
T0

N0
N2 + N0(r?Á)2

´

A(~r; t) =
Dp

T0(r)=N0(r)N(~r; t);
p

N0(r)rrÁ(~r; t);
p

N0(r)rµÁ(~r; t)
E

Take the SVD: A(~r; t) =
PNPOD

q=1 ¾quq(~r)wq(t)

Unweight the spatial data:

uq(~r) =
Dp

T0(r)=N0(r)nq(~r);
p

N0(r)rrÁq(~r);
p

N0(r)rµÁq(~r)
E

Make substitutions in equations, e.g. N(~r; t) =
PNPOD

q=1 ¾qnq(~r)wq(t)

Multiply by e.g. T0=N0 ¾pn
¤
pw
¤
p; add equations together

and volume integrate to use the POD spatial orthogonality relation.

Then time integrate to use the POD temporal orthogonality relation. Result:

@Ep

@t
= ¡

R ³
T0

rN0
¾2

pn¤p
@Áp

@µ
@N0

@r
+ : : :

´
dV

Bibitems: 5  
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POD Energy Dynamics Results – POD Growth Rates 

°(p) =
@Ep

@t

¯
¯
¯
¯
lin

Á

¾2
pPOD Mode Structures 

• Fourier-decomposed parallel-poloidal POD modes provide radial decomposition to the 
Fourier-decomposed energy dynamics 
 
•  Can similarly use linear eigenmodes, but more difficult due to nonorthogonality 

Bibitems: 5, 6  
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