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Tokamak edge region encompasses boundary layer
between hot core plasma and material walls

=Complex geometry = Sets key engineering constraints for
fusion reactor

*Rich physics = Sets global energy confinement

(plasma, atomic, material)

Magnetic fusion device = Edge-plasma region
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BOUT (BOUndary Turbulence) was originally developed at
LLNL in late 1990s for modeling tokamak edge turbulence*

= Boundary Plasma Turbulence has a different T

characters than in the core and play an important role

in the core confinement

= BOUT is an unique code to simulate boundary plasma ,

turbulence in a complex geometry
= Observed large velocity shear layer o
= Proximity of open+closed flux surface
* Presence of X-point 2T

= BOUT/ BOUT++ codes has being applied to DIlI-D, C-
MOD,NSTX, MAST, ITER senarios, **-

*X.Q. Xu and R.H. Cohen, Contrib. Plasma Phys. 38, 158 (1998) P TP YTTITY TTTIITSY [TRPTITITY FTRPTITI
Xu, Umansky, Dudson & Snyder, CiCP, V. 4, 949-979 (2008). $ 5 6 4 8 9
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BOUT++ is a successor to BOUT,
developed in collaboration with Univ. York*

Original BOUT, tokamak applications on boundary BG U T+ +

turbulence and ELMs with encouraging results Boundary Plasma Turbulence Code

—

BOUT-06: code refactoring using differential operator

approach, high order FD, verification I

BOUT++: OOP, 2D parallelization, applications to
tokamak ELMs and linear plasmas

v'Gyro-fluid extension
v'RMPs
v'Neutrals & impurities

v'Preconditioner
v'Massive concurrency

2000 2005 2011

N
>

*Umansky, Xu, Dudson, et al., , Comp. Phys. Comm. V. 180, 887-903 (2008).
Dudson, Umansky, Xu et al., Comp. Phys. Comm. V.180 (2009) 1467.
Xu, Dudson, Snyder et al., PRL 105, 175005 (2010).
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BOUT and BOUT++ have been products of broad
international collaborations

A

Argonne

NATIONAL LARBORATORY
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Lodestar Research Corporation

Lawrence Berkeley
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Institute of plasma Physics
Chinese Academy of Sciences
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Institute for Fusion Theory and Simulation, Zhejiang University
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BOUT++ utilizes a coordinate system aligned with
the magnetic field for computational efficiency.

In most simulations, only a fraction of the
Field-aligned coordinates torus is simulated
X =y -1, Computational
y =80, Domain

0
2=C- [, v(y.6)d6
where v is the local
safety factor given
by: Rv ¢

viy,0)=—= - ye
(l/} ) B-V0 PP =~ ~-ccca- -,

The y-periodicity requires a twist-shift
condition due to the field-aligned system

/ F(x,y=2ﬂ,zo)= F(x,y=0,zl)
"Q‘: """"""" Z = %o +dey)\/IOD Z max

C1 Cmax 27 C




BOUT++ Code can be run at high concurrency

= Direct numerical simulation of plasma turbulence

* Fluid equations based on Braginskii

equations for Ni! Te! Ti’ V||e! V||i’ and © P Narayanan et al. Performance
Characterization for Fusion Co-design

= Time integration by Imp|ICIt ODE solver Applications”. In: Proceedings of CUG (2011).

BOUT++ strong scaling (hopper.nersc.gov)
CVODE and PETSc 10% | . , . ! ! ! ! :
| == Ideal
= Parallel implementation with MPI | = Experiment

« BOUT++ provides an object-oriented
framework in C++
— Modular!!! [

* MPI parallelization allows ideal strong ;¢ |
scaling to hold up to 70,000 cores! '

* Multi-developer version control allows
for efficient development 10"

10t 2
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A comparison of a GAM ExB oscillation observed in a BOUT
simulation of experimental discharge (109644) and a comparison with
BES measured turbulence poloidal velocity spectrum
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> — Simulation

G. R. McKee, PoP, Vol. 10, 1712 (2003)
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BOLT f (kHz) Outboard Midplane (jy=40
Xueqiao Xu Dlll-D Shot #109644@1150
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Spectrum of the GPI data is compared
with that of the BOUT simulation NSTX

GPI[R, Z, t=0.900] (ArbitraryUnits) , «S[GPI})..}..[k.] (Arbitrory Unvits}
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W.M.NEVINS, X.Q.XU, et. al., in 19th IAEA Fusion Energy Conference,
Lyon (France) 14-19 October 2002, IAEA-CN-94/TH/P3-07.
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Structure of density blobs in X-point region is
distinctly different from that at outer mid-plane

Alcator C-Mod Turbulence imaging via
configuration Gas Puff Imaging (MIT,
PPPL) 05 T T ,f

‘:.1-:\\\"\;’\\ . \l r \ &
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N
Alcator

ylod

 Blobs at outer midplane are more or less “round”

 Blobs near x-point are radially elongated

« Consistent with recent x-point GPl measurements at C-Mod
« Radial fingers are caused by flux tube squeezing

« Apparently turbulence drive is from outer mid-plane
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Extended BOUT++ code to magnetic X-point geometry and plasma shear flow
BOUT++ simulations for DIlI-D ELMy H-mode: shot #131997 at reduced J,

e e  DHNI-D
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v'ldeal MHD stability boundary is consistent with infinite-n BALLOO code
v'Inclusion of e inertial eliminates the stability boundary
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BOUT++ simulations for one of the latest designs of the ITER 15 MA
inductive ELMy H-mode scenario (under the burning condition®

> Simulations starting from equilibrium generated by the CORSICA code.

Growth rate of Peeling-Ballooning mode of

ITER 15 MA inductive H-mode for pedestal T scan ITER 15 MA inductive H-mode for pedestal T scan
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* Marginal unstable pedestal case, T, 4=5.5keV, n,.=15

* The calculations impact previous ITER ELMy H-mode scenario design as it was
based on the pedestal height T, ,~4keV
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BOUT++ simulations for one of the latest deS|gns of the ITER 15 MA

inductive ELMy H-mode scenario

It is numerical challenge to simulation ITER divertor
geometry, requiring high resolutions nx > 1000, ny>100,

even for linear mode.
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BOUT++ simulations show radial and poloidal mode structures and

for the ITER 15 MA inductive ELMy H-mode scenario
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Nonlinear simulations of
peeling-ballooning modes
with anomalous electron viscosity
in ELM crashes
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Perturbed pressure Contours
from Nonlinear P-B modes

512x64x64,
S=10% & S,;=10"2

Pressure fluctuation
2u,0p/B?
contours-- poloidal

Ccross section
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Pressure Profile from BOUT++
Nonlinear P-B modes

512x64x64,
S=1 OS,SH:'] 012

Pressure profile:
2uy<P>/B>  P=P,+<dp>
pressure vs. radius and

poloidal angle
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Perturbed pressure Contours
from nonlinear P-B modes

27 I 1 T
512x64x64, B
S=105 & S,=1012 ¥
Pressure fluctuation
or
2u,0P/B? ‘
contours-- poloidal :
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Pressure Profile from
Nonlinear P-B modes

512x64x64,
S=105 & S,;=10"2

Pressure profile:

2uy<P>/B>  P=P,+<dp>
pressure vs. radius and

poloidal angle

_—

S
SRS,

o
"\

——

S

v

h=A

Ny

=

RS
':} TR Ty

i

~
o
SRR

X
T

X

a

midplane

L

19



Flux-surface-averaged pressure profile 2u, <P>/B? vs S with S;;=10'2
low S -> large ELM size, ELM size is insensitive when S>107

04070"""""""\"““'
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jdv [Po-P(t=74))/ jdv P0=0.13 -
R R,

) ]

R, R:
o1s Idv [P o-P(t=160)) [dv Po-0.11

ELM size= AW,,.4/ W4

0.010

| AW,4= the ELM energy loss

| W,q =pedestal stored energy
S=107,10°8

t=74t, %
0.005— : . —
C‘OOO ’;| R|1 | - ‘ 1 11 11 1 | 1 IRIZ i| 1 ]
4.3 4.4 4.5
R(m)

(1) a sudden collapse: P-B modes -> magnetic reconnection -> bursting process
(2) a slow backfill as a turbulence transport process
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For lower S (10°), the reconnection region grows

and the pedestal collapse becomes much larger.

L
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Calculated fluctuations amplitude is within factor ~2 from
LAPD data, qualitatively in reasonable agreement

PDF of 8n/n is in semi-quantitative
agreement with experimental data

10° | Vin/Qgl=1x1 0_3
LAPD data 3
Vin/Qcl=2x10
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103 | | L \ \ o
3 2 -1 0 1 2 3 M.V.Umansky, APS invited talk 2010
dn/RMS(3dn)

v'If neutral density is taken too low =>
PDF shape becomes different from expt.
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Y (m/p,)

Nonlinear BOUT++ Simulations Grow by Linear Drift Wave
Instability and Saturate by Nonlinear Interactions
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One mission of the workshop is to promote effective
collaboratlon within the BOUT community and beyond

Workshop Theme

The mission of the workshop is (1) to prepare
researchers to use and further develop the
BOUT++ code for edge turbulence, transport,
and ELM simulations of magnetic fusion
devices; and (2) to promote effective
collaboration within the BOUT community
and beyond.

Workshop Format

This 3 day workshop covers tutorial lectures
for the basics of the BOUT++ code and tools
used by BOUT++, special lectures on gyrofluid
models, resonant magnetic fields,
preconditioners, and topical applications by \
present BOUT++ users/developers. Some ' Conference Contacts

. = " ne L. Massi
'FE,,;;& sessions will include an associated lab ¢ alfgzes:z :_Z;T ll
\ oY o exercise using Linux machines. E-mail: massiatt1@inl.gov




