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Tokamak edge region encompasses boundary layer 
between hot core plasma and material walls 

§ Complex geometry 

§ Rich physics  
(plasma, atomic, material) 

§  Sets key engineering constraints for 
fusion reactor  

§  Sets global energy confinement 
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BOUT (BOUndary Turbulence) was originally developed at 
LLNL in late 1990s for modeling tokamak edge turbulence* 

§  Boundary Plasma Turbulence has a different 

characters than in the core and play an important role 

in the core confinement 

§  BOUT is an unique code to simulate boundary plasma 

turbulence in a complex geometry 

§  Observed large velocity shear layer 

§  Proximity of open+closed flux surface 

§  Presence of X-point 

§  BOUT/ BOUT++ codes has being applied to DIII-D, C-

MOD,NSTX, MAST, ITER senarios, ··· 

* X.Q. Xu and R.H. Cohen, Contrib. Plasma Phys. 38, 158 (1998) 
Xu, Umansky, Dudson & Snyder, CiCP, V. 4, 949-979 (2008).  
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BOUT++ is a successor to BOUT,  
  developed in collaboration with Univ. York* 

2000                                     2005                                  2011 

Original BOUT, tokamak applications on boundary 
turbulence and ELMs with encouraging results 

BOUT-06: code refactoring using differential operator 
approach, high order FD, verification 

BOUT++: OOP, 2D parallelization, applications to 
tokamak ELMs and linear plasmas 

• Umansky, Xu, Dudson, et al., , Comp. Phys. Comm. V. 180 , 887-903 (2008).  
  Dudson, Umansky, Xu et al., Comp. Phys. Comm. V.180 (2009) 1467. 
  Xu, Dudson, Snyder  et al., PRL 105, 175005  (2010). 

ü Gyro-fluid extension 
ü RMPs 
ü Neutrals & impurities 
ü Preconditioner 
ü Massive concurrency 

B    UT++ 
Boundary Plasma Turbulence Code 
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BOUT and BOUT++ have been products of broad 
international collaborations 

Lodestar Research Corporation 

Institute of plasma Physics 
Chinese Academy of Sciences 
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BOUT++ utilizes a coordinate system aligned with 
the magnetic field for computational efficiency. 

Field-aligned coordinates 

where ν is the local 
safety factor given 
by: 

ζ

θ

z

ψ

In most simulations, only a fraction of the 
torus is simulated 

Computational 
Domain 

The y-periodicity requires a twist-shift 
condition due to the field-aligned system 
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BOUT++ Code can be run at high concurrency 

§  Direct numerical simulation of plasma turbulence 

§  Fluid equations based on Braginskii 

equations for Ni, Te, Ti, V||e, V||i, and  ϖ  

§  Time integration by implicit ODE solver 

CVODE and PETSc 

§  Parallel implementation with MPI 
•  BOUT++ provides an object-oriented  
      framework in C++ 

–  Modular!!! 
•  MPI parallelization allows ideal strong 
      scaling to hold up to 10,000 cores! 
•  Multi-developer version control allows 
      for efficient development 

P Narayanan et al. Performance 
Characterization for Fusion Co-design 
Applications". In: Proceedings of CUG (2011). 
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A comparison of a GAM ExB oscillation observed in a BOUT 
simulation of experimental discharge (109644) and a comparison with 

BES measured turbulence poloidal velocity spectrum 

G. R. McKee, PoP, Vol. 10, 1712 (2003) 	
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Spectrum of the GPI data is compared 
with that of the BOUT simulation 

W.M.NEVINS, X.Q.XU, et. al. , in 19th IAEA Fusion Energy Conference, 
Lyon (France) 14-19 October 2002,  IAEA-CN-94/TH/P3-07.  
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Structure of density blobs in X-point region is 
distinctly different from that at outer mid-plane	



•  Blobs at outer midplane are more or less “round” 
•  Blobs near x-point are radially elongated 
•  Consistent with recent x-point GPI measurements at C-Mod 
•  Radial fingers are caused by flux tube squeezing 
•  Apparently turbulence drive is from outer mid-plane 
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Extended BOUT++ code to magnetic X-point geometry and plasma shear flow 
BOUT++ simulations for DIII-D ELMy H-mode:  shot #131997 at reduced J|| 

ü Ideal MHD stability boundary is consistent with infinite-n BALLOO code 
ü Inclusion of e- inertial eliminates the stability boundary 
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BOUT++ simulations for one of the latest designs of the ITER 15 MA 
inductive ELMy H-mode scenario (under the burning condition) 
Ø   Simulations starting from equilibrium generated by the CORSICA code.  

separatrix 
• Marginal unstable pedestal case, Tped=5.5keV, nmax=15 
• The calculations impact previous ITER ELMy H-mode scenario design as it was 
based on the pedestal height Tped=4keV 



13 

BOUT++ simulations for one of the latest designs of the ITER 15 MA 
inductive ELMy H-mode scenario 

 It is numerical challenge to simulation ITER divertor 
geometry, requiring high resolutions nx > 1000, ny>100, 
even for linear mode. Ideal MHD 

Ideal MHD 
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BOUT++ simulations show radial and poloidal mode structures and  
for the ITER 15 MA inductive ELMy H-mode scenario 
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Nonlinear simulations of  
peeling-ballooning modes  

with anomalous electron viscosity  
in ELM crashes 
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512x64x64,  

S=108 & SH=1012 

Pressure fluctuation 

contours-- poloidal 

cross section 

Perturbed pressure Contours  
from Nonlinear P-B modes 

2µ0δp/B2 
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512x64x64,  

S=108,SH=1012 

Pressure profile:  

pressure vs. radius and 

poloidal angle 

Pressure Profile from BOUT++  
Nonlinear P-B modes 

2µ0<P>/B2 P=P0+<δp>	
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 Outer 
midplane	
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512x64x64,  

S=105 & SH=1012 

Pressure fluctuation 

contours-- poloidal 

cross section 

Perturbed pressure Contours  
from nonlinear P-B modes 

2µ0δP/B2 
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512x64x64,  

S=105 & SH=1012 

Pressure profile:  

pressure vs. radius and 

poloidal angle 

Pressure Profile from 
Nonlinear P-B modes 

θ 

ψ 

2µ0<P>/B2 P=P0+<δp>	



θ	



ψ	

 Outer 
midplane	
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Flux-surface-averaged pressure profile 2µ0 <P>/B2 vs S with SH=1012                 
low S -> large ELM size, ELM size is insensitive when S>107  

(1) a sudden collapse:  P-B modes -> magnetic reconnection -> bursting process 
(2)  a slow backfill as a turbulence transport process 

ELM size= ΔWped/ Wped 

ΔWped= the ELM energy loss 

Wped =pedestal stored energy 

R1	

 R2	
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For lower S (106), the reconnection region grows 
and the pedestal collapse becomes much larger. 
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Calculated fluctuations amplitude is within factor ~2 from 
LAPD data, qualitatively in reasonable agreement 

M.V.Umansky, APS invited talk 2010	
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Nonlinear BOUT++ Simulations Grow by Linear Drift Wave 
Instability and Saturate by Nonlinear Interactions 

Most Unstable Linear Mode 

Non-Linear Saturated Turbulence 
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One mission of the workshop is to promote effective 
collaboration within the BOUT community and beyond 


