
Lawrence Livermore National Laboratory

Carol S. Woodward

UCRL-PRES-213978

Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551
This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

SUNDIALS: Suite of Nonlinear and
Differential/Algebraic Equation Solvers

2
Lawrence Livermore National Laboratory

Outline

 SUNDIALS Overview
 ODE and DAE integration

• Initial value problems
• Implicit integration methods

 Nonlinear Systems
• Newton’s method and inexact Newton’s method
• Preconditioning

 SUNDIALS: usage, applications, and availability
 Upcoming additions

3
Lawrence Livermore National Laboratory

LLNL has a long history of R&D in ODE/DAE methods
and software

 Fortran solvers written at LLNL:
• VODE: stiff/nonstiff ODE systems, with direct linear solvers
• VODPK: with Krylov linear solver (GMRES)
• NKSOL: Newton-Krylov solver - nonlinear algebraic systems
• DASPK: DAE system solver (from DASSL)

 Recent focus has been on sensitivity analysis
 Organized into a single suite, SUNDIALS, written in C and including

CVODE and CVODES, IDA, IDAS, and KINSOL

May 2009

4
Lawrence Livermore National Laboratory

Push to solve large, parallel systems motivated rewrites
in C

 CVODE: rewrite of VODE/VODPK [Cohen, Hindmarsh, 94]
 PVODE: parallel CVODE [Byrne and Hindmarsh, 98]
 KINSOL: rewrite of NKSOL [Taylor and Hindmarsh, 98]
 IDA: rewrite of DASPK [Hindmarsh and Taylor, 99]
 Sensitivity variants: SensPVODE, SensIDA, SensKINSOL [Brown,

Grant, Hindmarsh, Lee, 00-01]
 New sensitivity-capable solvers:

• CVODES [Hindmarsh and Serban, 02]
• IDAS [Serban, Petra, and Hindmarsh, 09]

 Organized into a single suite, SUNDIALS, including CVODE and
CVODES, IDA, IDAS, and KINSOL

5
Lawrence Livermore National Laboratory

The SUNDIALS package offers Newton solvers, time
integration, and sensitivity solvers
 CVODE: implicit ODE solver, y’ = f(y, t)

— Variable-order, variable step BDF (stiff) or implicit Adams (nonstiff)
— Nonlinear systems solved by Newton or functional iteration
— Linear systems by direct (dense or band) or iterative solvers

 IDA: implicit DAE solver, F(t, y, y’) = 0
— Variable-order, variable step BDF
— Nonlinear system solved by Newton iteration
— Linear systems by direct (dense or band) or iterative solvers

 KINSOL: Newton solver, F(u) = 0
— Inexact and Modified (with dense solve) Newton
— Linear systems by iterative or dense direct solvers

 CVODES: sensitivity-capable (forward & adjoint) CVODE
 IDAS: sensitivity-capable (forward & adjoint) IDA
 Iterative linear Krylov solvers: GMRES, BiCGStab, TFQMR

6
Lawrence Livermore National Laboratory

 Philosophy: Keep codes simple to use
 Written in C

—Fortran interfaces: FCVODE, FIDA, and FKINSOL
—Matlab interfaces: sundialsTB (CVODES, IDA, & KINSOL)

 Written in a data structure neutral manner
—No specific assumptions about data
—Application-specific data representations can be used

 Modular implementation
—Vector modules
—Linear solver modules

 Require minimal problem information, but offer user control over
most parameters

SUNDIALS was designed to easily interface with legacy
codes

7
Lawrence Livermore National Laboratory

Initial value problems (IVPs) come in the form of ODEs
and DAEs

 The general form of an IVP is given by

00 x)t(x
0)x,x,t(F

=
=

 If is invertible, we solve for to obtain an ordinary
differential equation (ODE), but this is not always the best
approach

 Else, the IVP is a differential algebraic equation (DAE)

 A DAE has differentiation index i if i is the minimal number of
analytical differentiations needed to extract an explicit ODE

x/F ∂∂ x

8
Lawrence Livermore National Laboratory

Stiffness of an equation can significantly impact
whether implicit methods are needed

 (Ascher and Petzold, 1998): If the system has widely varying time
scales, and the phenomena that change on fast scales are stable,
then the problem is stiff

 Stiffness depends on
• Jacobian eigenvalues, λj

• System dimension
• Accuracy requirements
• Length of simulation

 In general a problem is stiff on [t0, t1] if

101 −<<ℜ−)(min)tt(jj
λ

9
Lawrence Livermore National Laboratory

Dalquist test problem shows impact of stability on step
sizes for explicit and implicit methods

Dalquist test equation:
Exact solution:

Absolute stability requirement

If Re(λ)<0, then |y(tn)| decays exponentially; we cannot tolerate
growth in the approximate solution yn

Region of absolute stability of an integrator written as:
yn = R(z)yn-1, with time step z = hλ

,yy λ= 0y)0(y =
nt

n ey)t(y λ
0=

,...,n,yy nn 211 =≤ −

{ }1≤∈=)z(R;CzS

10
Lawrence Livermore National Laboratory

Forward and backward Euler show different stability
restrictions

 Forward Euler:

So, if λ < 0, FE has the step size restriction:

 Backward Euler:

So, if λ < 0, BE has the step size restriction:

() λλ h1)z(Ryhyy 1n1nn +=⇒+= −−

λ
2h ≤

()
λ

λ
h1

1)z(Ryhyy n1nn −
=⇒+= −

0>h

11
Lawrence Livermore National Laboratory

Curtiss and Hirchfelder example

()() 5050 −=−−= λtcosyy

Solution curves

time

y

Forward Euler

h=2.01/50

12
Lawrence Livermore National Laboratory

Curtiss and Hirchfelder example

()() 5050 −=−−= λtcosyy

time

y

Implicit schemes

h=0.5 for BEForward Euler

13
Lawrence Livermore National Laboratory

SUNDIALS has implementations of Linear Multistep
Methods (LMM)

 Two methods:
• Adams-Moulton (nonstiff); K1 = 1, K2 = k, k = 1,…,12
• BDF (stiff); K1 = k, K2 = 0, k = 1,…,5

 Nonlinear systems (BDF)
• ODE:

• DAE:

General form of LMM: ∑ ∑
= =

−− =+
1 2

0 0
0

K

i

K

i
ini,nnini,n yhy βα

() () 0yy,tfhyyG
k

1i
ini,nnn0nn =−−≡ ∑

=
−αβ()yfy =

() 0=y,yF () () 0y,yh,tFyG n

k

1i
ini,n

1
n0n =

≡ ∑

=
−

− αβ

14
Lawrence Livermore National Laboratory

Stability is very restricted for higher orders of BDF
methods

∑
=

−=−
k

i
ini,nnnn yyhy

1
0 αβ

Regions of instability grow
with the order

CVODE and IDA allow up to
order 5

CVODE includes an
optional stability limit
detection algorithm:
 Based on linear analysis
 Limits step if it detects a

potential stability
problem

Stability region OUTSIDE shaded area

Re(hλ)

Im
(h

λ)

15
Lawrence Livermore National Laboratory

CVODE solves

 Variable order and variable step size methods:
• BDF (backward differentiation formulas) for stiff systems
• Implicit Adams for nonstiff systems

 (Stiff case) Solves time step for the system
• applies an explicit predictor to give yn(0)

• applies an implicit corrector with yn(0) as the initial guess

)y,t(fy =

∑
=

− +=
q

j
nnjnjn)y(ftyy

1
0β∆α

∑
=

−− +=
q

j
n

p
jn

p
j)(n ytyy

1
110 β∆α

)y,t(fy =

16
Lawrence Livermore National Laboratory

Time steps and order are chosen to minimize the local
truncation error

 Time steps are chosen by:
• Estimate the error: E(∆t) = C(yn - yn(0))

− Accept step if ||E(∆t)||WRMS < 1
− Reject step otherwise

• Estimate error at the next step, ∆t’, as

• Choose next step so that ||E(∆t’)|| WRMS < 1
 Choose method order by:

• Estimate error for next higher and lower orders
• Choose the order that gives the largest time step meeting the

error condition

)t(E)tt()t(E q ∆∆∆∆ 1+′≈′

17
Lawrence Livermore National Laboratory

Computations weighted so no component
disproportionally impacts convergence

 An absolute tolerance is specified for each solution component,
ATOLi

 A relative tolerance is specified for all solution components, RTOL

 Norm calculations are weighted by:

 Bound time integration error with:

The 1/6 factor tries to account for estimation errors

ii
i

ATOLyRTOL
1ewt

+⋅
= () yewt1 y

1

2i
WRMS ∑

=

⋅=
N

i

i

N

6
1 y 0n <−)(ny

18
Lawrence Livermore National Laboratory

Nonlinear system will require nonlinear solves

 Use predicted value as the initial iterate for the nonlinear solver
 Nonstiff systems: Functional iteration

 Stiff systems: Newton iteration

• ODE:

• DAE:

() ∑
=

−+ +=
q

1i
ini,n)m(nn0)1m(n yyfhy αβ

() ())m(n)m(n)m(n yGyyM −=−+1

nh,yfIM 0βγγ =∂∂−≈

()nh,yFyFM 01 βγγ =∂∂+∂∂≈

19
Lawrence Livermore National Laboratory

SUNDIALS provides many options for linear solvers

 Iterative linear solvers
• Result in inexact Newton solver
• Scaled preconditioned solvers: GMRES, Bi-CGStab, TFQMR
• Only require matrix-vector products
• Require preconditioner for the Newton matrix, M

 Jacobian information (matrix or matrix-vector product) can be
supplied by the user or estimated with finite difference quotients

 Two options require serial environments and some pre-defined
structure to the data
• Direct dense
• Direct band

20
Lawrence Livermore National Laboratory

An inexact Newton-Krylov method can be used to solve
the implicit systems

 Krylov iterative methods find the linear system solution in a
Krylov subspace:

 Only require matrix-vector products

 Difference approximations to the matrix-vector product are used,

 Matrix entries need never be formed, and memory savings can
be used for a better preconditioner

θ
θ)x(F)vx(Fv)x(J −+

≈

}...,rJ,Jr,r{)r,J(K 2=

21
Lawrence Livermore National Laboratory

IDA solves F(t, y, y’) = 0

 C rewrite of DASPK [Brown, Hindmarsh, Petzold]
 Variable order / variable coefficient form of BDF
 Targets: implicit ODEs, index-1 DAEs, and Hessenberg index-2

DAEs
 Optional routine solves for consistent values of y0 and y0’

• Semi-explicit index-1 DAEs, differential components known,
algebraic unknown OR all of y0’ specified, y0 unknown

 Nonlinear systems solved by Newton-Krylov method

 Optional constraints: yi > 0, yi < 0, yi ≥ 0, yi ≤ 0

22
Lawrence Livermore National Laboratory

KINSOL solves F(u) = 0

 C rewrite of Fortran NKSOL (Brown and Saad)
 Inexact Newton solver: solves J ∆un = -F(un) approximately
 Modified Newton option (with direct solves) – this freezes the

Newton matrix over a number of iterations
 Krylov solver: scaled preconditioned GMRES, TFQMR, Bi-CGStab

• Optional restarts for GMRES
• Preconditioning on the right: (J P-1)(Ps) = -F

 Direct solvers: dense and band (serial & special structure)
 Optional constraints: ui > 0, ui < 0, ui ≥ 0 or ui ≤ 0
 Can scale equations and/or unknowns
 Dynamic linear tolerance selection

23
Lawrence Livermore National Laboratory

1. Starting with x0, want x* such that F(x*) = 0

2. Repeat for each k until

a. Solve (approximately)

b. Update, xk+1 = xk + λsk

An inexact Newton’s method is used to solve the
nonlinear problem

)x(Fs)x(J kkk −=

tol)x(F 1k ≤+

 tol may be chosen adaptively
based on accuracy requirements

 λ is a search parameter
 ||.|| is a weighted L-2 norm

co
ur

te
sy

 o
f D

. R
ey

no
ld

s
(S

M
U

)

24
Lawrence Livermore National Laboratory

Linear stopping tolerances must be chosen to prevent
“oversolves”

 Newton method assumes a linear model

• Bad approximation far from solution, loose tol.

• Good approximation close to solution, tight tol.

 Eisenstat and Walker (SISC 96)

• Choice 1

• Choice 2

 ODE literature

()2)1k()k(k FF9.0 −=η

1111 −−−− −−= kkkkkk FsJFFη

05.0=kη

)x(Fs)x(J)x(F kk1kkk η≤+ +

The linear system is solved to a given tolerance:

25
Lawrence Livermore National Laboratory

Inexact methods maintain the fast rate of convergence
of Newton’s method

 Convergence of Newton’s method is q-quadratic locally, for some
constant C

 Convergence of an inexact Newton method is
• q-linear if is constant in k

• q-super-linear if

• q-quadratic if for some constant C

 Eisenstat and Walker methods are q-quadratic

2*k*1k xxCxx −≤−+

0lim k

k
=

∞→
η

2k1kkk)x(FCs)x(J)x(F ≤+ +

kη

26
Lawrence Livermore National Laboratory

Line-search globalization for Newton’s method can
enhance robustness

 User can select:

• Inexact Newton

• Inexact Newton with line search

 Line searches can provide more flexibility in the initial guess (larger
time steps)

 Take, xk+1 = xk + λsk+1, for λ chosen appropriately (to satisfy the
Goldstein-Armijo conditions):

• sufficient decrease in F relative to the step length

• minimum step length relative to the initial rate of decrease

• full Newton step when close to the solution

27
Lawrence Livermore National Laboratory

Preconditioning is essential for large problems as
Krylov methods can stagnate

 Preconditioner P must approximate Newton matrix, yet be
reasonably efficient to evaluate and solve.

 Typical P (for time-dep. ODE problem) is
 The user must supply two routines for treatment of P:

• Setup: evaluate and preprocess P (infrequently)
• Solve: solve systems Px=b (frequently)

 User can save and reuse approximation to J, as directed by the
solver

 SUNDIALS offers hooks for user-supplied preconditioning
 Band and block-banded preconditioners are supplied for use with

the supplied vector structure

JJJI ≈− ~,~γ

28
Lawrence Livermore National Laboratory

Sensitivity Analysis

 Sensitivity Analysis (SA) is the study of how the variation in the output
of a model (numerical or otherwise) can be apportioned, qualitatively or
quantitatively, to different sources of variation in inputs.

 Applications:
• Model evaluation (most and/or least influential parameters), Model

reduction, Data assimilation, Uncertainty quantification,
Optimization (parameter estimation, design optimization, optimal
control, …)

 Approaches:
• Forward sensitivity analysis
• Adjoint sensitivity analysis

29
Lawrence Livermore National Laboratory

The SUNDIALS vector module is generic

 Data vector structures can be user-supplied
 The generic NVECTOR module defines:

• A content structure (void *)
• An ops structure – pointers to actual vector operations supplied by

a vector definition
 Each implementation of NVECTOR defines:

• Content structure specifying the actual vector data and any
information needed to make new vectors (problem or grid data)

• Implemented vector operations
• Routines to clone vectors

 Note that all parallel communication resides in reduction operations:
dot products, norms, mins, etc.

30
Lawrence Livermore National Laboratory

SUNDIALS provides serial and parallel NVECTOR
implementations

 Use is optional

 Vectors are laid out as an array of doubles (or floats)
 Appropriate lengths (local, global) are specified
 Operations are fast since stride is always 1
 All vector operations are provided for both serial and parallel cases
 For the parallel vector, MPI is used for global reductions

 These serve as good templates for creating a user-supplied vector
structure around a user’s own existing structures

31
Lawrence Livermore National Laboratory

SUNDIALS provides Fortran interfaces

 CVODE, IDA, and KINSOL
 Cross-language calls go in both directions:
 Fortran user code interfaces CVODE/KINSOL/IDA

 Fortran main interfaces to solver routines
 Solver routines interface to user’s problem-defining routine and

preconditioning routines

 For portability, all user routines have fixed names
 Examples are provided

32
Lawrence Livermore National Laboratory

SUNDIALS provides Matlab interfaces

 CVODES, KINSOL, and IDAS
 The core of each interface is a single MEX file which interfaces to

solver-specific user-callable functions
 Guiding design philosophy: make interfaces equally familiar to both

SUNDIALS and Matlab users
• all user-provided functions are Matlab m-files
• all user-callable functions have the same names as the

corresponding C functions
• unlike the Matlab ODE solvers, we provide the more flexible

SUNDIALS approach in which the 'Solve' function only returns the
solution at the next requested output time.

 Includes complete documentation (including through the Matlab help
system) and several examples

33
Lawrence Livermore National Laboratory

Structure of SUNDIALS

34
Lawrence Livermore National Laboratory

SUNDIALS code usage is similar across the suite

 Have a series of Set/Get routines to set options
 For CVODE with parallel vector implementation:

#include “cvode.h”
#include “cvode_spgmr.h”
#include “nvector_*.h”

y = N_VNew_*(n,…);
cvmem = CVodeCreate(CV_BDF,CV_NEWTON);
flag = CVodeSet*(…);
flag = CVodeInit(cvmem,rhs,t0,y,…);
flag = CVSpgmr(cvmem,…);
for(tout = …) {

flag = CVode(cvmem, …,y,…); }

NV_Destroy(y);
CVodeFree(&cvmem);

35
Lawrence Livermore National Laboratory

Availability

Web site:
Individual codes download
SUNDIALS suite download
User manuals
User group email list

The SUNDIALS Team:
Alan Hindmarsh, Radu Serban, and

Carol Woodward

Open source BSD license
https://computation.llnl.gov/casc/sundials

Publications
https://computation.llnl.gov/casc/sundials/
documentation/documentation.html

	Slide Number 1
	Outline
	LLNL has a long history of R&D in ODE/DAE methods and software
	Push to solve large, parallel systems motivated rewrites in C
	The SUNDIALS package offers Newton solvers, time integration, and sensitivity solvers
	SUNDIALS was designed to easily interface with legacy codes
	Initial value problems (IVPs) come in the form of ODEs and DAEs
	Stiffness of an equation can significantly impact whether implicit methods are needed
	Dalquist test problem shows impact of stability on step sizes for explicit and implicit methods
	Forward and backward Euler show different stability restrictions
	Curtiss and Hirchfelder example
	Curtiss and Hirchfelder example
	SUNDIALS has implementations of Linear Multistep Methods (LMM)
	Stability is very restricted for higher orders of BDF methods
	CVODE solves
	Time steps and order are chosen to minimize the local truncation error
	Computations weighted so no component disproportionally impacts convergence
	Nonlinear system will require nonlinear solves
	SUNDIALS provides many options for linear solvers
	An inexact Newton-Krylov method can be used to solve the implicit systems
	IDA solves F(t, y, y’) = 0
	KINSOL solves F(u) = 0
	An inexact Newton’s method is used to solve the nonlinear problem
	Linear stopping tolerances must be chosen to prevent “oversolves”
	Inexact methods maintain the fast rate of convergence of Newton’s method
	Line-search globalization for Newton’s method can enhance robustness
	Preconditioning is essential for large problems as Krylov methods can stagnate
	Sensitivity Analysis
	The SUNDIALS vector module is generic
	SUNDIALS provides serial and parallel NVECTOR implementations
	SUNDIALS provides Fortran interfaces
	SUNDIALS provides Matlab interfaces
	Structure of SUNDIALS
	SUNDIALS code usage is similar across the suite
	Availability

