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Outline

 SUNDIALS Overview
 ODE and DAE integration

• Initial value problems
• Implicit integration methods

 Nonlinear Systems
• Newton’s method and inexact Newton’s method
• Preconditioning

 SUNDIALS: usage, applications, and availability
 Upcoming additions
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LLNL has a long history of R&D in ODE/DAE methods 
and software

 Fortran solvers written at LLNL:
• VODE: stiff/nonstiff ODE systems, with direct linear solvers
• VODPK: with Krylov linear solver (GMRES) 
• NKSOL: Newton-Krylov solver - nonlinear algebraic systems 
• DASPK: DAE system solver (from DASSL)

 Recent focus has been on sensitivity analysis
 Organized into a single suite, SUNDIALS, written in C and including 

CVODE and CVODES, IDA, IDAS, and KINSOL

May 2009
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Push to solve large, parallel systems motivated rewrites 
in C

 CVODE: rewrite of VODE/VODPK [Cohen, Hindmarsh, 94]
 PVODE: parallel CVODE [Byrne and Hindmarsh, 98]
 KINSOL: rewrite of NKSOL [Taylor and Hindmarsh, 98]
 IDA: rewrite of DASPK [Hindmarsh and Taylor, 99]
 Sensitivity variants: SensPVODE, SensIDA, SensKINSOL [Brown, 

Grant, Hindmarsh, Lee, 00-01]
 New sensitivity-capable solvers:

• CVODES [Hindmarsh and Serban, 02]
• IDAS [Serban, Petra, and Hindmarsh, 09]

 Organized into a single suite, SUNDIALS, including CVODE and 
CVODES, IDA, IDAS, and KINSOL 



5
Lawrence Livermore National Laboratory

The SUNDIALS package offers Newton solvers, time 
integration, and sensitivity solvers
 CVODE: implicit ODE solver, y’ = f(y, t)

— Variable-order, variable step BDF (stiff) or implicit Adams (nonstiff)
— Nonlinear systems solved by Newton or functional iteration
— Linear systems by direct (dense or band) or iterative solvers

 IDA: implicit DAE solver, F(t, y, y’) = 0
— Variable-order, variable step BDF
— Nonlinear system solved by Newton iteration
— Linear systems by direct (dense or band) or iterative solvers

 KINSOL: Newton solver, F(u) = 0
— Inexact and Modified (with dense solve) Newton
— Linear systems by iterative or dense direct solvers

 CVODES: sensitivity-capable (forward & adjoint) CVODE 
 IDAS: sensitivity-capable (forward & adjoint) IDA 
 Iterative linear Krylov solvers: GMRES, BiCGStab, TFQMR
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 Philosophy: Keep codes simple to use
 Written in C

—Fortran interfaces: FCVODE, FIDA, and FKINSOL
—Matlab interfaces: sundialsTB (CVODES, IDA, & KINSOL)

 Written in a data structure neutral manner
—No specific assumptions about data
—Application-specific data representations can be used

 Modular implementation
—Vector modules
—Linear solver modules

 Require minimal problem information, but offer user control over 
most parameters

SUNDIALS was designed to easily interface with legacy 
codes
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Initial value problems (IVPs) come in the form of ODEs 
and DAEs

 The general form of an IVP is given by

00 x)t(x
0)x,x,t(F

=
=

 If              is invertible, we solve for    to obtain an ordinary 
differential equation (ODE), but this is not always the best 
approach

 Else, the IVP is a differential algebraic equation (DAE)

 A DAE has differentiation index i if i is the minimal number of 
analytical differentiations needed to extract an explicit ODE

x/F ∂∂ x
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Stiffness of an equation can significantly impact 
whether implicit methods are needed

 (Ascher and Petzold, 1998): If the system has widely varying time 
scales, and the phenomena that change on fast scales are stable, 
then the problem is stiff

 Stiffness depends on
• Jacobian eigenvalues, λj

• System dimension
• Accuracy requirements
• Length of simulation

 In general a problem is stiff on [t0, t1] if

101 −<<ℜ− )(min)tt( jj
λ
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Dalquist test problem shows impact of stability on step 
sizes for explicit and implicit methods

Dalquist test equation: 
Exact solution: 

Absolute stability requirement 

If Re(λ)<0, then |y(tn)| decays exponentially; we cannot tolerate 
growth in the approximate solution yn

Region of absolute stability of an integrator written as: 
yn = R(z)yn-1, with time step z = hλ
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Forward and backward Euler show different stability 
restrictions

 Forward Euler:

So, if λ < 0, FE has the step size restriction:

 Backward Euler:

So, if λ < 0, BE has the step size restriction:

( ) λλ h1)z(Ryhyy 1n1nn +=⇒+= −−
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Curtiss and Hirchfelder example

( )( ) 5050 −=−−= λtcosyy

Solution curves

time

y

Forward Euler 

h=2.01/50
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Curtiss and Hirchfelder example

( )( ) 5050 −=−−= λtcosyy

time

y

Implicit schemes 

h=0.5 for BEForward Euler 
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SUNDIALS has implementations of Linear Multistep 
Methods (LMM)

 Two methods:
• Adams-Moulton (nonstiff); K1 = 1, K2 = k, k = 1,…,12
• BDF (stiff); K1 = k, K2 = 0, k = 1,…,5

 Nonlinear systems (BDF)
• ODE: 

• DAE: 

General form of LMM: ∑ ∑
= =

−− =+
1 2
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Stability is very restricted for higher orders of BDF 
methods

∑
=

−=−
k

i
ini,nnnn yyhy

1
0 αβ 

Regions of instability grow 
with the order

CVODE and IDA allow up to 
order 5

CVODE includes an 
optional stability limit 
detection algorithm:
 Based on linear analysis
 Limits step if it detects a 

potential stability 
problem

Stability region OUTSIDE shaded area

Re(hλ)

Im
(h

λ)
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CVODE solves 

 Variable order and variable step size methods:
• BDF (backward differentiation formulas) for stiff systems
• Implicit Adams for nonstiff systems

 (Stiff case) Solves time step for the system
• applies an explicit predictor to give yn(0)

• applies an implicit corrector with yn(0) as the initial guess
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Time steps and order are chosen to minimize the local 
truncation error

 Time steps are chosen by:
• Estimate the error: E(∆t ) = C(yn - yn(0))

− Accept step if ||E(∆t)||WRMS < 1
− Reject step otherwise

• Estimate error at the next step, ∆t’, as

• Choose next step so that ||E(∆t’)|| WRMS < 1
 Choose method order by:

• Estimate error for next higher and lower orders
• Choose the order that gives the largest time step meeting the 

error condition

)t(E)tt()t(E q ∆∆∆∆ 1+′≈′
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Computations weighted so no component 
disproportionally impacts convergence

 An absolute tolerance is specified for each solution component, 
ATOLi

 A relative tolerance is specified for all solution components, RTOL 

 Norm calculations are weighted by:

 Bound time integration error with:

The 1/6 factor tries to account for estimation errors

ii
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Nonlinear system will require nonlinear solves

 Use predicted value as the initial iterate for the nonlinear solver
 Nonstiff systems: Functional iteration

 Stiff systems: Newton iteration

• ODE: 

• DAE:

( ) ∑
=
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SUNDIALS provides many options for linear solvers

 Iterative linear solvers
• Result in inexact Newton solver
• Scaled preconditioned solvers: GMRES, Bi-CGStab, TFQMR
• Only require matrix-vector products
• Require preconditioner for the Newton matrix, M

 Jacobian information (matrix or matrix-vector product) can be 
supplied by the user or estimated with finite difference quotients

 Two options require serial environments and some pre-defined 
structure to the data
• Direct dense 
• Direct band
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An inexact Newton-Krylov method can be used to solve 
the implicit systems

 Krylov iterative methods find the linear system solution in a 
Krylov subspace:

 Only require matrix-vector products

 Difference approximations to the matrix-vector product are used,

 Matrix entries need never be formed, and memory savings can 
be used for a better preconditioner

θ
θ )x(F)vx(Fv)x(J −+

≈
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IDA solves F(t, y, y’) = 0

 C rewrite of DASPK [Brown, Hindmarsh, Petzold]
 Variable order / variable coefficient form of BDF
 Targets: implicit ODEs, index-1 DAEs, and Hessenberg index-2 

DAEs
 Optional routine solves for consistent values of y0 and y0’ 

• Semi-explicit index-1 DAEs, differential components known, 
algebraic unknown OR all of y0’ specified, y0 unknown

 Nonlinear systems solved by Newton-Krylov method

 Optional constraints: yi > 0, yi < 0, yi ≥ 0, yi ≤ 0
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KINSOL solves F(u) = 0

 C rewrite of Fortran NKSOL (Brown and Saad)
 Inexact Newton solver: solves J ∆un = -F(un) approximately
 Modified Newton option (with direct solves) – this freezes the 

Newton matrix over a number of iterations
 Krylov solver: scaled preconditioned GMRES, TFQMR, Bi-CGStab

• Optional restarts for GMRES
• Preconditioning on the right: (J P-1)(Ps) = -F

 Direct solvers: dense and band (serial & special structure)
 Optional constraints: ui > 0, ui < 0, ui ≥ 0 or ui ≤ 0
 Can scale equations and/or unknowns
 Dynamic linear tolerance selection
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1. Starting with x0, want x* such that F(x*) = 0

2. Repeat for each k until

a. Solve (approximately)

b. Update, xk+1 = xk + λsk

An inexact Newton’s method is used to solve the 
nonlinear problem

)x(Fs)x(J kkk −=
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 tol may be chosen adaptively 
based on accuracy requirements 

 λ is a search parameter
 ||.|| is a weighted L-2 norm
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Linear stopping tolerances must be chosen to prevent 
“oversolves”

 Newton method assumes a linear model 

• Bad approximation far from solution, loose tol.

• Good approximation close to solution, tight tol.

 Eisenstat and Walker (SISC 96)

• Choice 1

• Choice 2

 ODE literature

( )2)1k()k(k FF9.0 −=η

1111 −−−− −−= kkkkkk FsJFFη

05.0=kη
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The linear system is solved to a given tolerance:
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Inexact methods maintain the fast rate of convergence 
of Newton’s method

 Convergence of Newton’s method is q-quadratic locally, for some 
constant C

 Convergence of an inexact Newton method is
• q-linear if      is constant in k

• q-super-linear if

• q-quadratic if for some constant C

 Eisenstat and Walker methods are q-quadratic
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Line-search globalization for Newton’s method can 
enhance robustness

 User can select:

• Inexact Newton

• Inexact Newton with line search

 Line searches can provide more flexibility in the initial guess (larger 
time steps)

 Take, xk+1 = xk + λsk+1, for λ chosen appropriately (to satisfy the 
Goldstein-Armijo conditions):

• sufficient decrease in F relative to the step length 

• minimum step length relative to the initial rate of decrease

• full Newton step when close to the solution
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Preconditioning is essential for large problems as 
Krylov methods can stagnate

 Preconditioner P must approximate Newton matrix, yet be 
reasonably efficient to evaluate and solve.

 Typical P (for time-dep. ODE problem) is
 The user must supply two routines for treatment of P:

• Setup: evaluate and preprocess P (infrequently)
• Solve: solve systems Px=b (frequently)

 User can save and reuse approximation to J, as directed by the 
solver

 SUNDIALS offers hooks for user-supplied preconditioning
 Band and block-banded preconditioners are supplied for use with 

the supplied vector structure

JJJI ≈− ~,~γ
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Sensitivity Analysis

 Sensitivity Analysis (SA) is the study of how the variation in the output 
of a model (numerical or otherwise) can be apportioned, qualitatively or 
quantitatively, to different sources of variation in inputs.

 Applications:
• Model evaluation (most and/or least influential parameters), Model 

reduction, Data assimilation, Uncertainty quantification, 
Optimization (parameter estimation, design optimization, optimal 
control, …)

 Approaches:
• Forward sensitivity analysis
• Adjoint sensitivity analysis
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The SUNDIALS vector module is generic

 Data vector structures can be user-supplied
 The generic NVECTOR module defines:

• A content structure (void *)
• An ops structure – pointers to actual vector operations supplied by 

a vector definition
 Each implementation of NVECTOR defines:

• Content structure specifying the actual vector data and any 
information needed to make new vectors (problem or grid data)

• Implemented vector operations
• Routines to clone vectors

 Note that all parallel communication resides in reduction operations: 
dot products, norms, mins, etc.
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SUNDIALS provides serial and parallel NVECTOR 
implementations

 Use is optional

 Vectors are laid out as an array of doubles (or floats)
 Appropriate lengths (local, global) are specified
 Operations are fast since stride is always 1
 All vector operations are provided for both serial and parallel cases
 For the parallel vector, MPI is used for global reductions

 These serve as good templates for creating a user-supplied vector 
structure around a user’s own existing structures
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SUNDIALS provides Fortran interfaces

 CVODE, IDA, and KINSOL
 Cross-language calls go in both directions:
 Fortran user code  interfaces  CVODE/KINSOL/IDA

 Fortran main  interfaces to solver routines
 Solver routines  interface to user’s problem-defining routine and 

preconditioning routines

 For portability, all user routines have fixed names
 Examples are provided



32
Lawrence Livermore National Laboratory

SUNDIALS provides Matlab interfaces

 CVODES, KINSOL, and IDAS
 The core of each interface is a single MEX file which interfaces to 

solver-specific user-callable functions
 Guiding design philosophy: make interfaces equally familiar to both 

SUNDIALS and Matlab users
• all user-provided functions are Matlab m-files
• all user-callable functions have the same names as the 

corresponding C functions 
• unlike the Matlab ODE solvers, we provide the more flexible 

SUNDIALS approach in which the 'Solve' function only returns the 
solution at the next requested output time.

 Includes complete documentation (including through the Matlab help 
system) and several examples
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Structure of SUNDIALS
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SUNDIALS code usage is similar across the suite

 Have a series of Set/Get routines to set options
 For CVODE with parallel vector implementation:

#include “cvode.h”
#include “cvode_spgmr.h”
#include “nvector_*.h”

y = N_VNew_*(n,…);
cvmem = CVodeCreate(CV_BDF,CV_NEWTON);
flag = CVodeSet*(…);
flag = CVodeInit(cvmem,rhs,t0,y,…);
flag = CVSpgmr(cvmem,…);
for(tout = …) {

flag = CVode(cvmem, …,y,…);  }

NV_Destroy(y);
CVodeFree(&cvmem);
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Availability

Web site:
Individual codes download 
SUNDIALS suite download
User manuals
User group email list

The SUNDIALS Team: 
Alan Hindmarsh, Radu Serban, and 

Carol Woodward

Open source BSD license
https://computation.llnl.gov/casc/sundials

Publications
https://computation.llnl.gov/casc/sundials/
documentation/documentation.html
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