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Outline

 SUNDIALS Overview
 ODE and DAE integration

• Initial value problems
• Implicit integration methods

 Nonlinear Systems
• Newton’s method and inexact Newton’s method
• Preconditioning

 SUNDIALS: usage, applications, and availability
 Upcoming additions
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LLNL has a long history of R&D in ODE/DAE methods 
and software

 Fortran solvers written at LLNL:
• VODE: stiff/nonstiff ODE systems, with direct linear solvers
• VODPK: with Krylov linear solver (GMRES) 
• NKSOL: Newton-Krylov solver - nonlinear algebraic systems 
• DASPK: DAE system solver (from DASSL)

 Recent focus has been on sensitivity analysis
 Organized into a single suite, SUNDIALS, written in C and including 

CVODE and CVODES, IDA, IDAS, and KINSOL

May 2009
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Push to solve large, parallel systems motivated rewrites 
in C

 CVODE: rewrite of VODE/VODPK [Cohen, Hindmarsh, 94]
 PVODE: parallel CVODE [Byrne and Hindmarsh, 98]
 KINSOL: rewrite of NKSOL [Taylor and Hindmarsh, 98]
 IDA: rewrite of DASPK [Hindmarsh and Taylor, 99]
 Sensitivity variants: SensPVODE, SensIDA, SensKINSOL [Brown, 

Grant, Hindmarsh, Lee, 00-01]
 New sensitivity-capable solvers:

• CVODES [Hindmarsh and Serban, 02]
• IDAS [Serban, Petra, and Hindmarsh, 09]

 Organized into a single suite, SUNDIALS, including CVODE and 
CVODES, IDA, IDAS, and KINSOL 
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The SUNDIALS package offers Newton solvers, time 
integration, and sensitivity solvers
 CVODE: implicit ODE solver, y’ = f(y, t)

— Variable-order, variable step BDF (stiff) or implicit Adams (nonstiff)
— Nonlinear systems solved by Newton or functional iteration
— Linear systems by direct (dense or band) or iterative solvers

 IDA: implicit DAE solver, F(t, y, y’) = 0
— Variable-order, variable step BDF
— Nonlinear system solved by Newton iteration
— Linear systems by direct (dense or band) or iterative solvers

 KINSOL: Newton solver, F(u) = 0
— Inexact and Modified (with dense solve) Newton
— Linear systems by iterative or dense direct solvers

 CVODES: sensitivity-capable (forward & adjoint) CVODE 
 IDAS: sensitivity-capable (forward & adjoint) IDA 
 Iterative linear Krylov solvers: GMRES, BiCGStab, TFQMR
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 Philosophy: Keep codes simple to use
 Written in C

—Fortran interfaces: FCVODE, FIDA, and FKINSOL
—Matlab interfaces: sundialsTB (CVODES, IDA, & KINSOL)

 Written in a data structure neutral manner
—No specific assumptions about data
—Application-specific data representations can be used

 Modular implementation
—Vector modules
—Linear solver modules

 Require minimal problem information, but offer user control over 
most parameters

SUNDIALS was designed to easily interface with legacy 
codes
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Initial value problems (IVPs) come in the form of ODEs 
and DAEs

 The general form of an IVP is given by

00 x)t(x
0)x,x,t(F

=
=

 If              is invertible, we solve for    to obtain an ordinary 
differential equation (ODE), but this is not always the best 
approach

 Else, the IVP is a differential algebraic equation (DAE)

 A DAE has differentiation index i if i is the minimal number of 
analytical differentiations needed to extract an explicit ODE

x/F ∂∂ x
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Stiffness of an equation can significantly impact 
whether implicit methods are needed

 (Ascher and Petzold, 1998): If the system has widely varying time 
scales, and the phenomena that change on fast scales are stable, 
then the problem is stiff

 Stiffness depends on
• Jacobian eigenvalues, λj

• System dimension
• Accuracy requirements
• Length of simulation

 In general a problem is stiff on [t0, t1] if

101 −<<ℜ− )(min)tt( jj
λ
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Dalquist test problem shows impact of stability on step 
sizes for explicit and implicit methods

Dalquist test equation: 
Exact solution: 

Absolute stability requirement 

If Re(λ)<0, then |y(tn)| decays exponentially; we cannot tolerate 
growth in the approximate solution yn

Region of absolute stability of an integrator written as: 
yn = R(z)yn-1, with time step z = hλ
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Forward and backward Euler show different stability 
restrictions

 Forward Euler:

So, if λ < 0, FE has the step size restriction:

 Backward Euler:

So, if λ < 0, BE has the step size restriction:

( ) λλ h1)z(Ryhyy 1n1nn +=⇒+= −−

λ
2h ≤
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Curtiss and Hirchfelder example

( )( ) 5050 −=−−= λtcosyy

Solution curves

time

y

Forward Euler 

h=2.01/50
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Curtiss and Hirchfelder example

( )( ) 5050 −=−−= λtcosyy

time

y

Implicit schemes 

h=0.5 for BEForward Euler 
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SUNDIALS has implementations of Linear Multistep 
Methods (LMM)

 Two methods:
• Adams-Moulton (nonstiff); K1 = 1, K2 = k, k = 1,…,12
• BDF (stiff); K1 = k, K2 = 0, k = 1,…,5

 Nonlinear systems (BDF)
• ODE: 

• DAE: 

General form of LMM: ∑ ∑
= =

−− =+
1 2
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Stability is very restricted for higher orders of BDF 
methods

∑
=

−=−
k

i
ini,nnnn yyhy

1
0 αβ 

Regions of instability grow 
with the order

CVODE and IDA allow up to 
order 5

CVODE includes an 
optional stability limit 
detection algorithm:
 Based on linear analysis
 Limits step if it detects a 

potential stability 
problem

Stability region OUTSIDE shaded area

Re(hλ)

Im
(h

λ)
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CVODE solves 

 Variable order and variable step size methods:
• BDF (backward differentiation formulas) for stiff systems
• Implicit Adams for nonstiff systems

 (Stiff case) Solves time step for the system
• applies an explicit predictor to give yn(0)

• applies an implicit corrector with yn(0) as the initial guess
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Time steps and order are chosen to minimize the local 
truncation error

 Time steps are chosen by:
• Estimate the error: E(∆t ) = C(yn - yn(0))

− Accept step if ||E(∆t)||WRMS < 1
− Reject step otherwise

• Estimate error at the next step, ∆t’, as

• Choose next step so that ||E(∆t’)|| WRMS < 1
 Choose method order by:

• Estimate error for next higher and lower orders
• Choose the order that gives the largest time step meeting the 

error condition

)t(E)tt()t(E q ∆∆∆∆ 1+′≈′
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Computations weighted so no component 
disproportionally impacts convergence

 An absolute tolerance is specified for each solution component, 
ATOLi

 A relative tolerance is specified for all solution components, RTOL 

 Norm calculations are weighted by:

 Bound time integration error with:

The 1/6 factor tries to account for estimation errors
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Nonlinear system will require nonlinear solves

 Use predicted value as the initial iterate for the nonlinear solver
 Nonstiff systems: Functional iteration

 Stiff systems: Newton iteration

• ODE: 

• DAE:

( ) ∑
=
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SUNDIALS provides many options for linear solvers

 Iterative linear solvers
• Result in inexact Newton solver
• Scaled preconditioned solvers: GMRES, Bi-CGStab, TFQMR
• Only require matrix-vector products
• Require preconditioner for the Newton matrix, M

 Jacobian information (matrix or matrix-vector product) can be 
supplied by the user or estimated with finite difference quotients

 Two options require serial environments and some pre-defined 
structure to the data
• Direct dense 
• Direct band
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An inexact Newton-Krylov method can be used to solve 
the implicit systems

 Krylov iterative methods find the linear system solution in a 
Krylov subspace:

 Only require matrix-vector products

 Difference approximations to the matrix-vector product are used,

 Matrix entries need never be formed, and memory savings can 
be used for a better preconditioner

θ
θ )x(F)vx(Fv)x(J −+

≈
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IDA solves F(t, y, y’) = 0

 C rewrite of DASPK [Brown, Hindmarsh, Petzold]
 Variable order / variable coefficient form of BDF
 Targets: implicit ODEs, index-1 DAEs, and Hessenberg index-2 

DAEs
 Optional routine solves for consistent values of y0 and y0’ 

• Semi-explicit index-1 DAEs, differential components known, 
algebraic unknown OR all of y0’ specified, y0 unknown

 Nonlinear systems solved by Newton-Krylov method

 Optional constraints: yi > 0, yi < 0, yi ≥ 0, yi ≤ 0
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KINSOL solves F(u) = 0

 C rewrite of Fortran NKSOL (Brown and Saad)
 Inexact Newton solver: solves J ∆un = -F(un) approximately
 Modified Newton option (with direct solves) – this freezes the 

Newton matrix over a number of iterations
 Krylov solver: scaled preconditioned GMRES, TFQMR, Bi-CGStab

• Optional restarts for GMRES
• Preconditioning on the right: (J P-1)(Ps) = -F

 Direct solvers: dense and band (serial & special structure)
 Optional constraints: ui > 0, ui < 0, ui ≥ 0 or ui ≤ 0
 Can scale equations and/or unknowns
 Dynamic linear tolerance selection



23
Lawrence Livermore National Laboratory

1. Starting with x0, want x* such that F(x*) = 0

2. Repeat for each k until

a. Solve (approximately)

b. Update, xk+1 = xk + λsk

An inexact Newton’s method is used to solve the 
nonlinear problem

)x(Fs)x(J kkk −=

tol)x(F 1k ≤+

 tol may be chosen adaptively 
based on accuracy requirements 

 λ is a search parameter
 ||.|| is a weighted L-2 norm
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Linear stopping tolerances must be chosen to prevent 
“oversolves”

 Newton method assumes a linear model 

• Bad approximation far from solution, loose tol.

• Good approximation close to solution, tight tol.

 Eisenstat and Walker (SISC 96)

• Choice 1

• Choice 2

 ODE literature

( )2)1k()k(k FF9.0 −=η

1111 −−−− −−= kkkkkk FsJFFη

05.0=kη

)x(Fs)x(J)x(F kk1kkk η≤+ +

The linear system is solved to a given tolerance:
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Inexact methods maintain the fast rate of convergence 
of Newton’s method

 Convergence of Newton’s method is q-quadratic locally, for some 
constant C

 Convergence of an inexact Newton method is
• q-linear if      is constant in k

• q-super-linear if

• q-quadratic if for some constant C

 Eisenstat and Walker methods are q-quadratic
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Line-search globalization for Newton’s method can 
enhance robustness

 User can select:

• Inexact Newton

• Inexact Newton with line search

 Line searches can provide more flexibility in the initial guess (larger 
time steps)

 Take, xk+1 = xk + λsk+1, for λ chosen appropriately (to satisfy the 
Goldstein-Armijo conditions):

• sufficient decrease in F relative to the step length 

• minimum step length relative to the initial rate of decrease

• full Newton step when close to the solution
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Preconditioning is essential for large problems as 
Krylov methods can stagnate

 Preconditioner P must approximate Newton matrix, yet be 
reasonably efficient to evaluate and solve.

 Typical P (for time-dep. ODE problem) is
 The user must supply two routines for treatment of P:

• Setup: evaluate and preprocess P (infrequently)
• Solve: solve systems Px=b (frequently)

 User can save and reuse approximation to J, as directed by the 
solver

 SUNDIALS offers hooks for user-supplied preconditioning
 Band and block-banded preconditioners are supplied for use with 

the supplied vector structure

JJJI ≈− ~,~γ
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Sensitivity Analysis

 Sensitivity Analysis (SA) is the study of how the variation in the output 
of a model (numerical or otherwise) can be apportioned, qualitatively or 
quantitatively, to different sources of variation in inputs.

 Applications:
• Model evaluation (most and/or least influential parameters), Model 

reduction, Data assimilation, Uncertainty quantification, 
Optimization (parameter estimation, design optimization, optimal 
control, …)

 Approaches:
• Forward sensitivity analysis
• Adjoint sensitivity analysis
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The SUNDIALS vector module is generic

 Data vector structures can be user-supplied
 The generic NVECTOR module defines:

• A content structure (void *)
• An ops structure – pointers to actual vector operations supplied by 

a vector definition
 Each implementation of NVECTOR defines:

• Content structure specifying the actual vector data and any 
information needed to make new vectors (problem or grid data)

• Implemented vector operations
• Routines to clone vectors

 Note that all parallel communication resides in reduction operations: 
dot products, norms, mins, etc.
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SUNDIALS provides serial and parallel NVECTOR 
implementations

 Use is optional

 Vectors are laid out as an array of doubles (or floats)
 Appropriate lengths (local, global) are specified
 Operations are fast since stride is always 1
 All vector operations are provided for both serial and parallel cases
 For the parallel vector, MPI is used for global reductions

 These serve as good templates for creating a user-supplied vector 
structure around a user’s own existing structures
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SUNDIALS provides Fortran interfaces

 CVODE, IDA, and KINSOL
 Cross-language calls go in both directions:
 Fortran user code  interfaces  CVODE/KINSOL/IDA

 Fortran main  interfaces to solver routines
 Solver routines  interface to user’s problem-defining routine and 

preconditioning routines

 For portability, all user routines have fixed names
 Examples are provided
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SUNDIALS provides Matlab interfaces

 CVODES, KINSOL, and IDAS
 The core of each interface is a single MEX file which interfaces to 

solver-specific user-callable functions
 Guiding design philosophy: make interfaces equally familiar to both 

SUNDIALS and Matlab users
• all user-provided functions are Matlab m-files
• all user-callable functions have the same names as the 

corresponding C functions 
• unlike the Matlab ODE solvers, we provide the more flexible 

SUNDIALS approach in which the 'Solve' function only returns the 
solution at the next requested output time.

 Includes complete documentation (including through the Matlab help 
system) and several examples
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Structure of SUNDIALS
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SUNDIALS code usage is similar across the suite

 Have a series of Set/Get routines to set options
 For CVODE with parallel vector implementation:

#include “cvode.h”
#include “cvode_spgmr.h”
#include “nvector_*.h”

y = N_VNew_*(n,…);
cvmem = CVodeCreate(CV_BDF,CV_NEWTON);
flag = CVodeSet*(…);
flag = CVodeInit(cvmem,rhs,t0,y,…);
flag = CVSpgmr(cvmem,…);
for(tout = …) {

flag = CVode(cvmem, …,y,…);  }

NV_Destroy(y);
CVodeFree(&cvmem);
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Availability

Web site:
Individual codes download 
SUNDIALS suite download
User manuals
User group email list

The SUNDIALS Team: 
Alan Hindmarsh, Radu Serban, and 

Carol Woodward

Open source BSD license
https://computation.llnl.gov/casc/sundials

Publications
https://computation.llnl.gov/casc/sundials/
documentation/documentation.html
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