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“The tyranny of scales”
(SBES report, 2006)
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Figure 1: Time scales in fusion plasmas (FSP report)

"The tyranny of scales will not be simply defeated by building bigger and faster
computers" (SBES report, p. 30)
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Algorithmic challenges in temporal scale-bridging

» PDE systems of interest typically have mixed character, with strongly hyperbolic and parabolic

components.

3 Hyperbolic stiffness (linear and dispersive waves): k(J) ~ At Wast ~ s > 1

CFL
A Parabolic stiffness (diffusion): x(J) ~ 255 > 1

» Bridging the time-scale disparity requires a combination of approaches:
[ Analytical elimination (e.g., reduced models).
[ Well-posed numerical discretization (e.g., asymptotic preserving methods)

[ Some level of implicitness in the temporal formulation (for stability; accuracy requires care).

» Key algorithmic requirement: SCALABILITY

CPU ~ O (E)

ny
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Algorithmic scalability vs. parallel scalability

"The tyranny of scales will not be simply defeated by building bigger and faster computers"

(NSF SBES 2006 report, p. 30)

» Optimal algorithm: | CPU ~ N/n, |

CPU ~ Nllj"‘ N = ( £ ) d « > 0, algorithmic scalability
ny P 0 B > 0, parallel scalability

» Much emphasis has been placed on parallel scalability (B).
» However, parallel scalability is limited by the lack of algorithmic scalability:
d Weak scaling: N «n, = CPU ~ nzﬂg = requires o« = f = 0!

Explicit | Implicit (direct) | Implicit (Krylov iterative) | Implicit (multilevel)
azl/d‘ xn=2-2/d ‘ o > 1 (varies) ‘ o~ 0
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How do multilevel (multigrid) methods work?

» MG employs a divide-and-conquer approach to attack error components in the solution.

(4 Oscillatory components of the error are "EASY" to deal with (if a SMOOTHER exists)
(d Smooth components are DIFFICULT.

‘ |dea: coarsen grid to make "smooth" components appear oscillatory, and proceed recursively I

33133

17x17

928

» SMOOTHER is make or break of MG!

» Smoothers are hard to find for hyperbolic systems, but fairly easy for parabolic ones:

CAN ONE PARABOLIZE HYPERBOLIC PDES?
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Parabolization: a simple example

» Linear, coupled wave equation:
0l = 0,0, 0,0 = 0 lU.

» Discretize implicitly in time (but keep in the spatial continuum for now):

W =y 4+ Ate 0" o = 0" + Aro, L

» Combine equations:

(I — A2 )u" = u" + Atd, 0"

» Equation is now parabolic!

(A Achieved by implicit discretization ALONE.

A Implicit discretization automatically parabolizes unresolved hyperbolic time scales.
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Parabolization: a Schur complement perspective

un—i—l — " i Ataxv”“ , Z)n—i-l — T Ataxun—i-l

un+1 un
Z)n—i—l — Z)n

» 2x2 block can be formally inverted via block factorization:

» Coupling structure:

I —Atdy
—Atdy I

Di U |1 upy! D —UD;'L 0 I 0
L D, o I 0 D, DL 1
-1 ~
|1 ou B I 0 (I-uL)™ o I -U
L I | LI 0 I |0 I

» Only inverse of [ — UL (Schur complement) is required! The system has been “PARABOLIZED "

I - UL = (I — At?9?)
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Generalization to nonlinear systems:

Jacobian-Free Newton-Krylov Methods

» Objective: solve nonlinear system G (¥"1) = 0 efficiently (scalably).
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» Converge nonlinear couplings using Newton-Raphson method: O X

» Jacobian-free implementation:

\/

Krylov method of choice: GMRES (nonsymmetric systems).

\/

Right preconditioning: solve equivalent Jacobian system for dy = PydX:

kP Pox = —Gy
oy

» Approximations in preconditioner do not affect accuracy of converged solution; only efficiency!

\/

Parabolization+MG is employed ONLY in preconditioning step.
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Physics-based preconditioner development: a template

» Conceptual formulation:

Understand stiff time scales in your PDE system: normal mode analysis
|dentify couplings in PDE system that are responsible for fast time scales

Analyze block coupling structure of Jacobian to identify and target suitable 22 blocks

sl

Perform parabolization (Schur factorization) in the linearized, semi-discrete (discrete time,

spatial continuum)
» Implementation:

1. Code full nonlinear residual (based on original nonlinear set of PDEs) to drive JFNK

2. Code linear, parabolized (approximate) set of PDEs in the preconditioner stage

3. ESSENTIAL FOR EFFICIENCY: Invert Schur complement using scalable PDE solver, e.g.,
multigrid.

4. Done!
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Limitations of physics-based preconditioning

» The parabolization step requires spatial rediscretization of parabolized PDE.

» As a consequence, there will be spatial truncation error differences between preconditioner and
nonlinear residual.

» This fact limits practical nonlinear convergence tolerances:
(A Convergence rate of PBP stalls when nonlinear residual is comparable to the truncation error.

[ It is not of practical interest to converge the nonlinear system any further!

3 Nonlinear relative tolerances of 10™* are typical.
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Application #1: 2D Resistive reduced MHD

L. Chacén, D. A. Knoll and J. M.Finn, J. Comput. Phys., 178, 15-36 (2002)
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Equations

» The 2D reduced MHD equations (incompressible flow) are (Alfvénic units):

VO = w (1)
(047 V—yVH¥+E = 0 (2)
0 +7-V—-vVHw+S, = B-V(VY) (3)

where 7 =2Zx V® ; B=2Zx VY, 1 is the resistivity and v the viscosity.
» This system supports the Alfvén wave, which is a fast normal mode of the system and limits the

time step in explicit implementations.
» The domain is a rectangle of size L, x L.

» Differencing: second-order accurate in space and in time.
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Physics-based preconditioner for RMHD

» We linearize the RMHD system and eliminate dw:

L, oY = 0By VP — Gy,
[L,V?—0(Zx V) - V] 6@ = 0[(By-V)V?>—Zx V]y- V0¥ — Gy + L, (Ga),
1 "
L, = A—t—i—é)(vo-V—)(Vz)

» Terms propagating Alfvén wave:
¥ = AtBy-Vod

VZ6d = AtBy-V(V?6Y)

V? complicates matters, because a direct substitution is not possible.

» However, a simplification is possible, and yields the approximation:

L,0Y = 0By Véd — Gy,

Q

L,6® 0By VoY +V ?[~Gy — Lu(—Go)] .

~"

rhse

OAK
RIDGE

National Laboratory Luis Chacén, chaconl@ornl.gov




Physics-based preconditioner for RMHD: Parabolization

» System is simplified further by:
1. Stationary iteration in 6@ (Jacobi).

L,o¥Y"™™ = 6By Véd" ! — Gy,

60"t~ D 'By - VO¥" ! 4 rhsit.

2. Parabolization:

I —6D;'By-V oMt o\ rhst
0 Ps; syl —Gy + 60(By - V)rhs!!

Ps; = L,7 — QZ(EO . V)Dv_l(go . V)

» Only Ps; requires nontrivial inversion — MG:

(1 Piece-wise constant restriction.

(A Bilinear prolongation.

(A Matrix-free matrix-vector products.

O Matrix-light point Jacobi smoothing: u5™ = u®* + D=1 (b — Au®)
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Efficiency performance

lteration count

At = 16OAtCFL, Tmax = 3OTA

- GMRES -
Grid At(TA) NNt nGgm m CPU time (S) CPU
32x32 15 35 6.3 22 3.5 0.16
64x64 7.5 3.25 6 19 31 1.6
128x128 3.75 3 6 18 277 15
256x256 1.875 3 10.3 31 4367 141
CPU time comparison
At = 5Ty
Grid CPU,y,/CPU | At/ Ateyy
64x64 4.3 142
128x128 6 294
256x256 7.8 578
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App. #2: 2D reduced extended MHD

L. Chacén and D. A. Knoll, J. Comput. Phys., 188 (2), 573-592 (2003)
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Model

» Hall MHD considers the extended Ohm's law for electric field:

-

Ee— —5xBtnit %(]_"x B—Vp.) — 1,V

where d; is the ion inertial length scale.

» For incompressible ions in 2D:

Vo =

w
(0 +7-V—yV24+mVHY¥Y +E = d;B-VB,
@ +7 -V —yV*+1VHB, +S5, = B:-Vou,—d;B-V(V*¥)
(04+7-V—-vV¥v,+S,, = B VB,
0 +3-V-1vVHw+S, = B-V(V?Y¥)

» Supports whistler wave: dispersive (w o d;k?)!

» Hyperresistivity 17, V* is required numerically to damp shortest scales on the grid.
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Hall MHD physics-based preconditioner

» Based on physics, we assume the following time-step ordering:

1 1
AtCFL(N A_xz) L At < AtAlfven(N A_x)

» SEMI-IMPLICIT approximation of the Jacobian matrix:

Do 0 0 0 I Do 0 0 0 0
Low Dy  Ug,v 0 0 Lo w Dy U, v 0 0
Je=| Lep. Lyp  Dp  U,p 0 ~ | Lep, Lyp  Dg 0 0
Loy, Lywp, LB, D, 0 Loy, Lyw. Lpo. Do, 0
| Low Lye O 0 Do| | Low ILyw 0 0 D, |

» PARABOLIZATION via Schur decomposition of red 2x2 block (whistler wave):

Dy Up,w
Lyp, Dp

P& 0

0 I 0 Dpg

B [ I UpyDy!

I 0
. . Dy'Lys, I ’

P& = Dy — Uy, Dy 'Ly, ~ Dy + At0%d? (B, - V)* V7.
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Preconditioner implementation details

» Semi-implicit system:

1 .
{E + 0G0 - V — 07V + 052 V* + At02d2(B 0 - V)2V2] ¥ = rhsy.

» Coupled MG solver:

i 5 . — 2 L 2 n . 2 _
[AtJrGer \V eﬂv]5T+[At9dfv + (Bpo V)]C = rhsy,

AtO*@?V2Y — ¢ = 0.

(A Matrix-light implementation
(A Block Jacobi smoothing
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Efficiency performance: grid scaling
(At — AtAlfven)

d, =0.2
Grid At Newton/At | GM/At | CPU (s) | CPUexp/CPU | At/Atcrr
64x64 | 0.02 3.0 0.8 14 3.3 74
128x128 0.01 2.6 0.6 46 8.5 147
256x256 0.005 2.0 0 123 28.0 294
d, =04
Grid At Newton/At | GM/At | CPU (s) | CPUexp/CPU | At/Atcrr
64x64 0.02 4.0 4 27 3.1 154
128x128 0.01 3.4 2.2 80 17.2 294
256x256 0.005 3.0 1.2 248 26.0 588
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Efficiency performance: Af scaling

(d; = 0.2)
128 x 128
At/Aty | Newton/At | GM/At | CPU (s) | CPUexp/CPU | At/Atcry,
1 2.6 0.6 46 8.5 147
2 3.6 1.8 /8 9.4 294
4 4.3 5.8 147 9.3 588
256 x 256
At/Ats | Newton/At | GM/At | CPU (s) | CPUep/CPU | At/Atcrr
1 2 0 123 28.0 294
2 2.8 0.8 214 30.0 588
4 4.2 3.8 460 20.5 1176
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A simple example for BOUT++: isothermal sound wave

» Outer "nonlinear” system (1D or multi-D):

pn—i-l — pn — AtV - p’n—i-l

ﬁn—l—l — p*n . Atcgvpn—H.

(1 This PDE system supports a single time scale: w = Fc:;k (sound wave).
> Physics is obliterated for At > 1/k, with k = 27tn/L.
(1 System is linear, and hence a single Newton iteration in JFNK is enough.

> GMRES is needed, since system is not symmetric.
» Preconditioner: P§X = Z; 6X = (8p,6p)

(I—APV?)6p = z,— AtV -2,

6p = —AtEVop+7Z,

([ Only one scalar parabolic operator (magenta) needs be inverted in preconditioner.
(d Use a scalable solver in PC (direct solver in 1D, MG in multi-D) for optimal results.

1 Plav with GMRES tolerance of outer iteration to test impact of truncation error.
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