Comparison of BOUT Simulations of Drift Resistive Ballooning Turbulence to Measurements in the Edge of DIII-D L-mode Discharges

Bruce I. Cohen
Lawrence Livermore National Laboratory
Livermore, CA 94551

in collaboration with

Maxim Umansky, William Nevins, and Mike Makowski
Lawrence Livermore National Laboratory
Livermore, CA 94551

Jose Boedo and Dmitry Rudakov, UC San Diego, San Diego, CA

George McKee and Zheng Yan
University of Wisconsin-Madison, Madison, Wisconsin

Rich Groebner and DIII-D Collaboration, General Atomics
La Jolla, CA

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

B. Cohen, et al., APS DPP 2012
Comparison of BOUT Simulations of Drift Resistive Ballooning Turbulence to Measurements in the Edge of DIII-D L-mode Discharges

1. Introduction -- Overview, definitions of suite of BOUT simulations and equations used
2. BOUT simulations of shot #119919 (with Te & with/without Ti fluctuations)
3. Plunging probe data for shot #119919 and comparison to BOUT simulation
4. BES data for shot #119919, GKV software synthetic diagnostic adjustment for spatial resolution of BES, and comparison to BOUT simulation
5. Inclusion of model $E_{radial}(r)$ fitted to probe and CER data in BOUT simulations of #119919: sheared $E_{radial}xB$ is stabilizing
6. Summary of comparisons between BOUT and experimental data from probe and BES for shot #119919
7. Simulations of colder, lower density shot #119934, with and without E_{radial}
8. New results from LAPD simulation with/without Reynolds stress zonal flow
9. Conclusions

B. Cohen, et al., APS DPP 2012
BOUT Simulations of Resistive Drift Ballooning Turbulence in Edge Region for DIII-D L-Mode Shots #119919/..21/..30/..34

- Simulations of electromagnetic resistive drift ballooning in DIII-D L-mode shots #119919, 119921, 119930, and 119934, with full geometry and magnetic shear, crossing the separatrix
- Nonlinear BOUT equations for ion density, vorticity, electron and ion velocities, electron and ion temperatures, Ohm’s law, and Maxwell’s equations.
- In earlier work, we have suppressed a spatial odd-even numerical mode that balloons along field line
- Simulation results for various physics models and validation against probe and BES data
- BOUT obtains steady-state turbulence with fluctuation amplitudes and transport that compare reasonably to DIII-D probe and BES data. Sheared rotation due to $E_{\text{radial}}(r)$ is stabilizing, at least linearly.
BOUT Simulation of Resistive Drift Ballooning Turbulence for DIII-D L-mode Shots - Outline

- Electromagnetic simulations of resistive ballooning turbulence in single-null DIII-D geometry (Braginskii equations + drift ordering):
 - **Case #1**: No T_e fluctuations, (a) with E_r
 - **Case #2**: With T_e fluctuations
 - **Case #3**: With T_e fluctuations and electron parallel thermal conduction
 - **Case #4**: With T_e fluctuations, electron parallel thermal conduction, and
 \[\nabla_{\parallel} = \mathbf{b}_0 \cdot \nabla + \tilde{\mathbf{b}} \cdot \nabla \text{ in} - \nabla_{\parallel} \phi \text{ and } \nabla_{\parallel} j_{\parallel} \]
 - **Case #5**: With T_e and T_i fluctuations, etc.
 - **Case #6**: With T_e and T_i fluctuations, etc., and imposed (a) E_r & (b) $5E_r$

- Comparison to probe and BES data for DIII-D shots #119919,21,30,34. These shots are well-characterized L-mode shots exhibiting steady-state turbulence.

B. Cohen, et al., APS DPP 2012
Case #5: Include Nonlinear Advection of $T_{e,i}$ in BOUT06 Equations for Resistive Drift Ballooning with Magnetic Flutter

Consider the following simplified Braginskii + reduced Maxwell eqns with drift ordering in the BOUT06 framework:

$$\frac{d\tilde{N}_i}{dt} + \nabla N_i \tilde{\nabla} = \left(\frac{2c}{eB} \right) b_0 \times \kappa \cdot (\nabla \tilde{P}_e - N_i e \nabla \varphi) + \nabla || \tilde{j}_i / e$$

$$\frac{d\tilde{\varphi}}{dt} = 2\omega_c b_0 \times \kappa \cdot \nabla \tilde{P} + N_i Z_i e \frac{4\pi V_A^2}{c^2} \nabla || \tilde{j}_i$$

$$\frac{d\tilde{V}_{e,i}}{dt} = - \frac{e}{m_e} E_{||} - \frac{1}{N_i Z_i e} (T_{e0} \nabla || \tilde{N}_i) + 0.51 v_{ei} \tilde{j}_i$$

$$\frac{d\tilde{k}_{e,i}}{dt} = - \frac{1}{N_i Z_i} \nabla || \tilde{P},$$

$$\frac{d\tilde{T}_{e,i}}{dt} = \frac{2}{3N_i Z_i} \nabla \cdot \left(\kappa_{e,i} \nabla || \tilde{T}_{e,i} \right), \quad \kappa_{e,i}^e = 3.2 \frac{N_i T_{e0} T_{e0}}{m_e}$$

$$\mathbf{E} = - \frac{1}{c} \frac{\partial}{\partial t} \mathbf{A} || - \nabla \varphi, \quad - \nabla^2 \mathbf{A} || = - \frac{4\pi}{c} \mathbf{j} ||, \quad \mathbf{B} = \nabla \times \mathbf{A} || + \mathbf{B}_0$$

$$\mathbf{v} = \nabla \cdot \left[eZ_i N_i \nabla \varphi \right] + \nabla^2 P_i \approx eZ_i N_i \nabla^2 \varphi \quad \nabla || = \mathbf{b}_0 \cdot \nabla + \tilde{\mathbf{b}} \cdot \nabla \quad Z_i = 1$$

$$\frac{d}{dt} \left(\nabla E_0 + \tilde{\nabla} E \right) \cdot \nabla \quad N_i = N_{i0} + \tilde{N}_i, \quad T_s = T_{s0} + \tilde{T}_s, \ldots$$

$$\tilde{P} = N_i (\tilde{T}_e + \tilde{T}_i) + \tilde{N}_i (T_{e0} + T_{i0}), \quad T_{i0} = T_{e0}, \quad \nabla || s_0 = 0$$

- Electromagnetic with
 $$\nabla || = \mathbf{b}_0 \cdot \nabla + \tilde{\mathbf{b}} \cdot \nabla \text{ in } - \nabla || \varphi \text{ and } \nabla || \tilde{j}_i$$

- Actual DIII-D geometry

- Radial bdry conditions: Von Neumann on fluid fluctuations, Dirichlet on $A || \& \phi$

 Fluctuations decay to 0 at outer bdry & not necessarily at inner bdry

- DIII-D - like fixed background profiles for shots #119919 and 119934

- Case #4 includes T_e fluctuations (not T_i fluctuations) and parallel heat conduction

- Case #5 includes all of the above

B. Cohen, et al., APS DPP 2012
History of rms fluctuation amplitudes in midplane at separatrix with electron parallel thermal conduction and magnetic flutter, showing saturated turbulence in BOUT for shot #119919

BOUT Cases 4 and 5

- With T_e (& T_i) fluctuations, electron parallel thermal conduction, convective nonlinearities, and
 \[\nabla_{\parallel} = b_0 \cdot \nabla + \tilde{b} \cdot \nabla \text{ in } - \nabla_{\parallel} \phi \text{ and } \nabla_{\parallel} j_{\parallel} \]
- Temperature and density fluctuations saturate
- Including T_i fluctuations increases fluctuation amplitudes modestly

Fig. 1

Fig. 9

B. Cohen, et al., APS DPP 2012
Time-averaged ion density fluctuations in the midplane saturate at ~10-30% and peak near R_{sep}

BOUT Cases 4 and 5

- With T_e fluctuations, electron parallel thermal conduction, and $\nabla_{\parallel} = b_0 \cdot \nabla + \tilde{b} \cdot \nabla$
- Including T_i fluctuations leads to higher fluctuation amplitudes
- There is a poloidal asymmetry wrt midplane in the fluctuations

B. Cohen, et al., APS DPP 2012
The fluctuations are radially localized near the separatrix.

The fluctuations balloon to the outer side of torus where the pressure-weighted curvature drive is strongest.
Time-averaged T_e fluctuations in the midplane peak near the R_{sep} and saturate at \sim50-150% relative amplitude at $R>R_{sep}$

BOUT Cases 4 and 5

- With T_e fluctuations, electron parallel thermal conduction, nonlinear convection, and $\nabla_i = b_0 \cdot \nabla + \tilde{b} \cdot \nabla$
- T_e fluctuations are \sim10% near R_{sep} and are higher with finite T_i fluctuations

B. Cohen, et al., APS DPP 2012
Time-averaged ion particle diffusion coefficient in the midplane saturates at ~1.5-2 m²/s

BOUT Cases 4 and 5

With T_e fluctuations, electron parallel thermal conduction, nonlinear convection, and

\[\nabla_{||} = b_0 \cdot \nabla + b \cdot \nabla \]

Including T_i fluctuations leads to higher particle fluxes and diffusion coefficient
Time-averaged electron conductive thermal diffusion coefficient in the midplane saturates at \(\sim 2-6 \, \text{m}^2/\text{s} \)

BOUT Cases 4 and 5

![Graph showing Electron Conductive Heat Flux vs. Time-avg electron cond. thermal diff coef.](image)

Note: Here heat flux (conductive) = \(\frac{3}{2} N_0 < \delta v_r \delta T_e >_{\text{tor,t}} \), and \(\chi_e = -\frac{3}{2} N_0 < \delta v_r \delta T_e >_{\text{tor,t}} / N_0 \nabla T_e_0 \)

- With \(T_e \) fluctuations, electron parallel thermal conduction, nonlinear convection, and \(\nabla_\parallel = \mathbf{b}_0 \cdot \nabla + \mathbf{b} \cdot \nabla \)
- Including \(T_i \) fluctuations leads to higher heat fluxes and diffusion coefficient

B. Cohen, et al., APS DPP 2012
There is reasonable agreement between BOUT simulation and Langmuir probe data for DIII-D #119919 with respect to peak fluctuation amplitudes, particle and thermal flux, and localization.

- BOUT with T_e & T_i fluct’ns, electron parallel thermal conduction, convective nrity, $\nabla || = b_0 \cdot \nabla + \tilde{b} \cdot \nabla$

- Probe signals decrease below noise levels for $R > 231$ cm, and stop for $R < 225$ cm
- Typical experimental rms δn_e and δT_e fluctuations at the separatrix exceed $\sim 20\%$ & $\sim 50\%$
- δn_e, δT_e and the probe fluxes in the midplane usually peak near the separatrix
- BOUT simulations and Langmuir probe data agree within factors of 2 in peak amplitudes and localization for $2.25m \leq R \leq 2.31m$

Fig. 7
BES Measurements: Long-Wavelength Density Fluctuation Characteristics in 119921 -- G. McKee, Z. Yan

- Short beam-blips injected to obtain BES data during L-mode plasma conditions

BES 4x4 Grid

Density Fluctuation Spectrum

- Wavenumber ($k_\parallel cm^{-1}$)

- Power Spectra (a.u.)

- Frequency (kHz)

- @outer midplane

Spatial Correlation

- Correlation

- Spatial Separation (cm)

\(\tilde{n}/n\) Amplitude Profile

- 222.5cm
- 224.0cm
- 225.5cm

(Preliminary Analysis)
Synthetic Simulation Diagnostics Using GKV Suite to Match BES Data

- GKV is a suite of IDL routines built by Bill Nevins to analyze data from simulations or experiments. GKV includes routines to compute various quantities of interest, e.g., power spectra vs. k or ω or (ω, k); correlation functions, etc., and various plots.

- We construct synthetic diagnostics using the GKV suite of IDL routines to compare to BES data. Spatial filtering (1D or 2D) required in simulation diagnostics to model the $\Delta x=1$ cm limit on spatial resolution in the BES grid in R and Z. Filtering is applied to both the radial and binormal coordinates thru the convolution

 $$f_{\text{smooth}}(x) = \int dw(x-x')f(x')$$

 where

 $$w(x) = \begin{cases} \frac{1}{2\Delta r}[1 + \cos\left(\frac{\pi x}{\Delta r}\right)] & |\frac{x}{\Delta r}| < 1 \\ 0 & |\frac{x}{\Delta r}| > 1 \end{cases}$$

- Correlation functions are defined by normalized integrals:

 $$C(f; x, t) = \frac{\iint dx' dt' f(x', t')f(x'-x, t'-t)}{\iint dx' dt' f(x', t')f(x', t')}$$

- We construct synthetic diagnostics using the GKV suite to compare to BES data. **Spatial filtering** (1D or 2D) is required in simulation diagnostics to model the 1 cm limit on spatial resolution in the BES grid in R and Z.

B. Cohen, et al., APS DPP 2012
Reasonable Agreement between BOUT Simulation and Beam Emission Spectroscopy Data for DIII-D #119921 with respect to Peak Fluctuation Amplitude, Localization, Spatial Correlation Width, and Spectral Width

- Spatial filtering of the BOUT diagnostics reduces and spatially spreads peaks
- There is agreement between BOUT and BES to within factors of two or three, or better
Philosophy on the Modeling of Sheared Radial Electric Field and Zonal Flow Effects

• Sheared ExB flows can reduce linear growth rates and saturated turbulence levels for drift-type instabilities, e.g., core ITG, L-H transition phenomenology,…

• But zonal flows are not always important, e.g. in the ETG study of Holland et al., Nuc. Fusion 43, 761 (2003), zonal flows are not an important feature.

• In the edge, \(E_r(r) \) is influenced by sheaths at the divertor plates and limiters, by interactions with neutral gas, sources/sinks, other non-ambipolar processes, and the turbulence-generated zonal flows via the Reynolds stress.

• If there is good experimental data for \(E_r(r) \) that is sufficiently resolved spatially and temporally, and extends over the whole spatial domain, this data would incorporate all the physics to determine the zonal flows completely.

• We first study the effects of (1) an imposed steady \(E_r(r) \) based on fitting to experimental data and (2) \(E_r(r,t) \) including the Reynolds stress for all modes except for the longest radial wavelengths of the axisymmetric modes which are held constant at their initial defined values to maintain “equilibrium” profiles (ref. Waltz & Candy).
Model the Experimental Radial Electric Field to Study the Effects of Imposed \(E_0 \times B \) Shearing on Simulated Turbulence

- An equilibrium radial electric field \(E_0 \) is included in BOUT simulations for Cases 1, 4, & 5, using fits to the experimental probe and CER data near the midplane.

- L-mode plasmas typically have weakly sheared \(E \times B \) flows. In our fit to probe and CER data the \(E \times B \) shearing rate is \(< 2.4 \times 10^4 \) (1/s) < BOUT growth rates~\(O(1) \times 10^5 \) (1/s).

- We expect that with imposed sheared \(E \times B \) flow there will be weaker linear instability and some reduction of the saturated turbulence.

\[E_{radial} \text{ (kV/m)} \]

\[\text{Probe Data} \]

\[\text{Fit to CER+Probe Data} \]

\[R \text{ (m)} \]

\[\begin{array}{c}
\text{(b) } E_{radial} \text{ Profiles for DIII-D #119919 from 2 - 4 s (CER Data)} \\
\text{CER Data} \Delta \\
\text{Fit to CER+Probe Data} \\
R \text{ (m)}
\end{array} \]

\[\begin{array}{c}
\text{(c) Shearing Rate} \\
\text{Fit to CER+Probe Data} \\
R \text{ (m)}
\end{array} \]

Fig. 10

B. Cohen, et al., APS DPP 2012
Imposed $E_0 \times B$ Shearing Reduces Both Linear Growth Rates and Saturated Turbulent Amplitudes

- An equilibrium radial electric field E_0 is included in BOUT simulations for #119919 Cases 1, 4, 5, & 6, using fits to the experimental probe and CER data near midplane.

- In our fit to probe and CER data the ExB shearing rate is $< 2.4 \times 10^4 \text{ (1/s)} < \text{BOUT growth rates} \sim \text{O}(1) \times 10^5 \text{ (1/s)}$

- Imposed sheared ExB flow weakens linear growth rates, and saturation is much delayed (>2ms) and at lower amplitudes, while $5xE_r$ is much more stabilized.

![Graphs showing no T_e fluctuations vs. with T_e,i fluctuations](image-url)
Imposed $E_0 \times B$ Shearing Reduces Both Linear Growth Rates and Saturated Turbulent Amplitudes in Simulations

(a) Shot #119919, $E_r = 0$
Fluctuations at outer midplane

(b) Shot #119919, with E_r
Fluctuations at outer midplane

- Probe data
- BOUT simulation

Fig. 12

B. Cohen, et al., APS DPP 2012
As the Physics Model Becomes More Complete, the Agreement of BOUT Results with DIII-D Probe Data Improves - Summary

- Comparison of suite of BOUT simulations to shot #119919: peak values in midplane at saturation near R_{sep} ($E_{rad}=0$, $E_{rad} \neq 0$, $E_{rad}=5E_{rad}$ with δT_e convective nonlinearity)

<table>
<thead>
<tr>
<th>Bout simulation</th>
<th>$<\delta N_i>_{rms}$ (1018 m$^{-3}$)</th>
<th>$<\delta T_e>_{rms}$ (eV)</th>
<th>Radial Particle Flux (1020/m2s)</th>
<th>D_r (m2/s) local</th>
<th>Conductive Radial Heat Flux = $\frac{1}{2}N_0 <\delta v_r, \delta T_r>$ (103 J/m2s)</th>
<th>χ_e(m2/s), local (conductive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1: $\delta T_e=0$</td>
<td>0.95</td>
<td>0.37</td>
<td>1.8</td>
<td>0.4</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>#1a: w/E$_r$**</td>
<td>0.37</td>
<td>N/A</td>
<td>0.07</td>
<td>0.02</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>#4: $\delta T_e \neq 0$</td>
<td>1.3</td>
<td>4.0</td>
<td>3.3</td>
<td>1.7</td>
<td>3.3</td>
<td>2.7</td>
</tr>
<tr>
<td>$k_{</td>
<td></td>
<td>} \neq 0$ & $\hat{b} \cdot \nabla$</td>
<td>1.3</td>
<td>4.0</td>
<td>3.3</td>
<td>1.7</td>
</tr>
<tr>
<td>#5 & w/\delta T$_i$</td>
<td>2.0</td>
<td>7.5</td>
<td>9.5</td>
<td>2</td>
<td>10</td>
<td>2.2</td>
</tr>
<tr>
<td>#6a w/E$_r$</td>
<td>0.7</td>
<td>5.5</td>
<td>0.8</td>
<td>0.27</td>
<td>2.5</td>
<td>0.32</td>
</tr>
<tr>
<td>#6a w/5E$_r$</td>
<td>0.3</td>
<td>3.5</td>
<td>0.18</td>
<td>0.035</td>
<td>0.75</td>
<td>0.036</td>
</tr>
<tr>
<td>DIII-D #119919 probe data</td>
<td>2.0</td>
<td>10</td>
<td>11.0</td>
<td>\sim0.2-1 \dagger</td>
<td>1.2</td>
<td>\sim1-2 \dagger</td>
</tr>
</tbody>
</table>

**Cases #1 w/E$_r$ has not saturated at end of simulation (1.8 ms)

\daggerTypical, flux-surface-averaged values for shot #119919 inferred from UEDGE reconstruction

B. Cohen, et al., APS DPP 2012
Comparison of BOUT Results with BES Data for Suite of Physics Models - Summary

- Comparison of suite of BOUT simulations to shot #119921 BES data: fluctuation frequency spectra, peak density amplitude radial half-width, correlation lengths
- Factor of 2 or better agreement seen between simulation synthetic diagnostics with filtering and the DIII-D #119921 BES data (with or without sheared $E_0 \times B$ velocity included in BOUT)

<table>
<thead>
<tr>
<th>Bout simulation</th>
<th>$<\delta N/N_i>_{\text{rms}}$ peak vs. R</th>
<th>$\Delta R_{\text{half-max}}$ of $<\delta N/N_i>_{\text{rms}}$ (cm)</th>
<th>$\Delta Z_{\text{corr, half-max}}$ of density (cm)</th>
<th>Peak freq in density fluct’n spect, raw/filtered (10^5 rad/s)</th>
<th>Freq half-max in density fluct’t’n spect, raw/filtered (10^5 rad/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1: $\delta T_e=0$</td>
<td>0.13 / 0.07</td>
<td>1.2 / 1.5</td>
<td>0.6 / 0.9</td>
<td>3 / 0.5</td>
<td>4 / 2</td>
</tr>
<tr>
<td>#1a: w/E,**</td>
<td>0.065/0.045</td>
<td>0.7/0.8</td>
<td>2.0 / 2.3</td>
<td>0 / 0</td>
<td>1/ 0.7</td>
</tr>
<tr>
<td>#4: $\delta T_e\neq0$</td>
<td>0.20 / 0.12</td>
<td>1.4 / 1.2</td>
<td>0.4 / 0.7</td>
<td>3.0 / 1.5</td>
<td>2 / 1.2</td>
</tr>
<tr>
<td>$\kappa_{\parallel}=0$ & b · \nabla</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5: w/δT_i</td>
<td>0.21 / 0.12</td>
<td>1.7 / 2</td>
<td>0.4 / 0.7</td>
<td>3.0 / 0&1.5</td>
<td>1 / 1.5</td>
</tr>
<tr>
<td>#6a: w/E,</td>
<td>0.07 / 0.05</td>
<td>1.5 / 1.7</td>
<td>0.8/ 0.9</td>
<td>0.5 / 0.5</td>
<td>0.5 / 0.5</td>
</tr>
<tr>
<td>#6b: $E_r=5E_i$</td>
<td>0.011/0.006</td>
<td>0.5 / 0.6</td>
<td>3.3</td>
<td>3.8 / 3.8</td>
<td>0.25 / 0.25</td>
</tr>
<tr>
<td>DIII-D #119921 BES data</td>
<td>0.09 ±0.2</td>
<td>2 ±0.2</td>
<td>2 ±0.2</td>
<td>3.8</td>
<td>1.3 ±0.2</td>
</tr>
</tbody>
</table>

**Cases #1 w/E, has not saturated at end of simulation (1.8 ms)
Comparison of Probe Data from Shots #119930 and 119934 vs. 119919 -- Edge Plasmas with Lower Density and Temperature

- L-mode shots #119930 and 119934 edge plasmas are colder and have lower densities than in shot #119919.
- The growth rate for resistive ballooning is proportional to \(\eta^{1/3} \beta^{2/3} / n^{1/3} \propto T^{1/6} n^{1/3} \).
- A factor of two lower temperature and density decreases the drive for resistive ballooning by \(O(1/\sqrt{2}) \) if all else is fixed in shots #119930/119934 vs. #119919.

Reduced \(N_i0 \) and \(T_e0 \) profiles lead to reduced fluctuation amplitudes and radial fluxes in #119930 & 119934.
BOUT simulations of Case 5 with no E_{radial} for shots # 119919 and 119934 show that the linear growth rate for the resistive-drift ballooning instability is reduced in 119934, in qualitative agreement with theoretical expectation with its lower equilibrium electron temperature and density in the edge.

- The absolute values of the fluctuation amplitudes are reduced in 119934 accompanying the reduction in growth rate of the instability.

- Note that cases with temperature fluctuations have increased interchange drive in general and with T_i fluctuations are more unstable than without.

Case 5 #119919,34

B. Cohen, et al., APS DPP 2012
B. Cohen, et al., APS DPP 2012

BOUT Simulation and Probe Data Show that #119934 Is Slightly Less Turbulent Than #119919

- Probe data from L-mode shots #119919 & 34 are compared with BOUT simulations including T_e & T_i fluctuations (Case 5). Turbulence in #119934 is slightly reduced from that in #119919
- Density and temperature fluctuations, and radial fluxes tend to peak near the separatrix

![Graphs showing comparison between probe data and BOUT simulations](image-url)
Radial Electric Fields Fitted to Probe and CER Data for Simulations of Shots #119919, 119930 and 119934

- The electric potential and radial electric field are well determined from the probe data in the SOL, but tend to diverge and become unreliable inside the last closed flux surface.
- The radial electric field determined by CER extends to smaller radii and shows that E_{radial} is relatively flat within significant temporal scatter.

E_{radial} CER data

E_{radial} probe data & fit to probe/CER data

B. Cohen, et al., APS DPP 2012
Inclusion of Radial Electric Field Reduces Growth Rates and Saturated Fluctuation Levels in Simulation of Shot #119934

- Inclusion of E_r reduces linear growth rates and saturated fluctuation amplitudes less so; the finite E_r saturated amplitudes tend to recover to the levels of the $E_r=0$ case
- Simulation agreement with probe for relevant radii, $2.25m \leq R \leq 2.31m$, remains fair

B. Cohen, et al., APS DPP 2012
Evidence of Stabilizing Effects of Sheared Radial Electric Field with Reynolds Stress Zonal Flow Effects in Simulation of LAPD Edge Turbulence

- We simulate edge turbulence in LAPD cylindrical geometry with a 3-field electrostatic model supporting drift resistive instability (density, vorticity, electron temperature) including E_r and the effects of the Reynolds stress on zonal flows for all modes except the longest radial wavelengths of the axisymmetric modes (which are held constant at their initial defined values to maintain “equilibrium” profiles fitting the experiment).

- We have compared simulations with imposed E_{r0} and with/without the Reynolds stress zonal flow effects. The Reynolds stress reduces the saturated turbulence in the edge by a factor of 2-3 in the rms amplitudes early in the saturation. Plotted here are (a) the total electric potential $\phi_{tot}=\phi_0+\phi$ vs. radius at various times at saturation, (b) rms fluctuating $<\phi>$ at a/2 and L/2 vs. time, and (c) snapshots of the fluctuating $\phi(r,\theta)$ showing the Reynolds zonal flow effects. ϕ_0 is from expt.

- These simulations are being extended, and DIII-D L-mode simulations will be undertaken.

B. Cohen, et al., APS DPP 2012
Summary: Relative Agreement in Comparison of BOUT Results with DIII-D Probe and BES Data on Shots #119919 & 119934

- Comparison of suite of BOUT simulations to shots #119919/119921 probe and BES data: fluctuation frequency spectra, peak density amplitude radial half-width, correlation lengths, fluxes and diffusion rates are in reasonable agreement.

- RMS peak density and temperature fluctuation amplitudes measured with the Langmuir probe agree (#119919 & 119934) within factors of 2 or better with simulations as the physics model improves. Observed radial particle diffusivities and thermal conduction diffusivities in simulation are consistent with typical L-mode inferred values.

- Spatial filtering of the synthetic simulation diagnostics is needed to model the 1 cm spatial resolution of the BES data. The spatial filtering spreads and reduces peaks in the raw data.

- There is factor-of-2 or better agreement seen between simulation synthetic diagnostics and the DIII-D #119921 BES data for the relative ion density and T_e fluctuation amplitudes, particle flux, spatial widths, and spectral frequency widths.

- Inclusion of the radial E_{radial} inferred from experiment introduces a weakly sheared ExB flow that reduces growth rates and saturation amplitudes in simulations. But saturated amplitudes can recover nonlinearly, e.g., #119934. Reynolds stress may reduce turbulence.

- Colder, lower density edge plasmas are less unstable and have smaller fluctuation levels.

- **Drift resistive ballooning modes are a reasonable candidate for L-mode edge plasma turbulence in DIII-D shots #119919/21, #119930/34.**