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Background : Peeling-ballooning model for ELMs 
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P.B. Snyder, et.al Nucl. Fusion 47 (2007) 961 

 Edge-Localized-Modes (ELMs) 
 Erosion of PFC; 
 Impurity transport; 
 Confinement; 

 
 Peeling-ballooning model 

 ideal peeling-ballooning  instability; 
 Ion diamagnetic effect; 
 Resistivity/hyper-resistivity; 

 
 

 Kinetic effect? 
 FLR effect; 
 Landau damping; 
 Toroidal resonance; 

 
 
 
 

 
 

A. Kirk, PRL 96, 185001 (2006) 



Nonlinear ITG/KBM 
simulations at pedestal 
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BOUT++: A framework for nonlinear twofluid and gyrofluid simulations   

 Different twofluid and gyrofluid models are developed under BOUT++ 
framework for ELM simulations 

Landau damping  

Toroidal resonance 

Zonal flow closure 

Twofluid  Gyrofluid (FLR effect) Physics 

3-field 
(𝜛, 𝑃, 𝐴∥) 

1+0 
(𝑛𝑖𝐺 , 𝑛𝑒 , 𝐴∥) 

Peeling-ballooning 
mode 

4-field 
(𝜛, 𝑃, 𝐴∥, 𝑉∥) 

2+0 
(𝑛𝑖𝐺 , 𝑛𝑒 , 𝐴∥, 𝑉∥) 

+ Acoustic wave 

6-field 
(𝜛, 𝑛𝑖 , 𝐴∥, 𝑉∥, 𝑇𝑖 , 𝑇𝑒) 

3+1 
(𝑛𝑖𝐺 , 𝑛𝑒 , 𝐴∥, 𝑉∥, 𝑇𝑖⊥, 𝑇𝑖∥, 𝑇𝑒) 

+ Thermal transport 

Available  

Numerical  
method 
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6-field 
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+ Thermal transport 

Numerical  
method 

FLR effect with large 
density gradient 

Landau damping 
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In twofluid simulations, the ion diamagnetic stabilization on high-n 
modes disappears when temperature increases 
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Normalized flux y (radial direction)  

 The instability does not localize at peak pressure gradient region  
 Not pressure gradient driven ballooning mode, but other instability 
 Lowest order ballooning equation changes 
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 Ion diamagnetic effect stabilizes ballooning modes  First term decreases 
 Ion density gradient introduces Ion-Density-Gradient mode: Second  term becomes 

dominant  

When            increases: 

 Local dispersion relation with density gradient 

Local analysis: Ion-Density-Gradient mode in twofluid model 
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Ion diamagnetic stabilization 
on ballooning modes 

Instability introduced 
by density gradient 

 Typically, the density gradient is weak, so we get the well-known ion diamagnetic 
stabilization on ballooning modes 

 But at H-mode pedestal, density gradient is large, so we get 
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Is the IDG mode a kind of real physics 
instability?  

Or it reveals certain disadvantage of 
twofluid model?  
 Gyrofluid model 
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 We derived an isothermal electromagnetic 3-field gyro-fluid model with 

vorticity formulation generalized from Snyder-Hammett gyro-fluid 

model [1] for edge plasmas. 

 

 

 

 

 

 

[1] P. B. Snyder and G. W. Hammett, Phys. Plasmas 8, 3199 (2001). 
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3-field isothermal gyrofluid model 
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Gyrofluid model shows FLR stabilization on high-n modes and no IDG 
mode is found! 
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 Higher temperature 
leads to more FLR 
stabilization on high-n 
modes; 

 No IDG mode is found in 
gyrofluid simulations 
 

Ion diamagnetic effect alone in two-fluid model is not sufficient to 
represent FLR stabilization if density gradient is large! 



Gyroviscous terms are necessary to stabilize  
Ion-Density-Gradient modes and should be kept in twofluid model 

• At long wavelength limit, gyro-fluid goes back to two-fluid but with additional 

gyroviscous terms 

Normalized wavenumber (kqi)  

• Gyroviscous terms represent 
necessary FLR effect to stabilize 
the virtual IDG modes and 
should be kept in twofluid 
model. 
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Gyroviscosity introduces more numerical noise in In nonlinear 
simulations 

Fig. Time averaged 
power spectrum in 𝑘𝑧 
for twofluid and 
gyrofluid simulations. 
The additional line 
shows the  k-3.3 trend 

 Three toroidal resolutions: 
     𝑁𝑧 = 65,129,257 
 Gyrofluid:  

 Three power spectrums have same index; 
 Good convergence; 

 Twofluid: 
 𝑁𝑧 = 65 case shows a tail at high 𝑘𝑧 region; 
 The tail disappears in 𝑁𝑧 = 129 case; 
 Need 𝑁𝑧 = 257 to recover gyrofluid spectrum;  
 Gyroviscosity needs 3rd finite difference  numerical noise 
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Energy losing process during one ELM event 

Linear phase Initial crash 

phase characteristic 

Linear 
phase 

Growing of various 
linear instabilities 

Initial 
crash 

 

• Reconnection 
• Formation of 

filaments 
• Energy loss 

carried by 
filaments(used 
in BOUT++) 

relaxation 

Turbulence 
transport, mainly 
EXB convection 

Saturation 

Total energy 
loss(measured in 
experiments) 

relaxation Saturation 
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Nonlinear gyrofluid simulation with large density gradient shows ELM 
size keeps increasing and no saturation phase is found  

 After the initial crash, the pedestal 
keeps collapse until it is fully 
destroyed; 

 Energy loss keeps increasing;  
 No saturation.  
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Filamentary structure is generated at initial crash and the following 
turbulence transport further relaxes pressure profile 

Linear phase Initial crash Turbulence transport 
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EXB shearing is too weak to suppress the local turbulence  
at the top of pedestal  

 ExB shearing rate 

 Local suppression of 
turbulence by EXB shearing  

Pedestal top bottom 

𝜔𝐸𝑋𝐵 Weak Strong 

𝑃  Large  Small 

 Density profile changes the 
distribution of ExB shearing  



• Thermal transport  

– Parallel thermal conductivity is demonstrated to 
be important in our previous work; (Xia, 2012 IAEA talk) 

–  How about nonlocal thermal transport?  

Landau damping 
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Since the saturation phase determines the total energy loss of an ELM 
event, more physics are necessary to correctly predict the saturation 
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6-field two fluid model in BOUT++ framework 

Vorticity  

Ion density  

Parallel motion 

Ohm’s law 

Ion temperature 

Electron 
temperature 
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Landau damping has larger stabilizing effect on P-B modes than flux 
limited expression 

 Flux limited thermal conductivity  

 Landau damping closure * 

 Parallel thermal conductivity has 
stabilizing effect on peeling-ballooning 
modes; 

 Landau damping shows stronger 
stabilizing effect; 

*  
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Landau damping and flux limited heat flux has no damping effect on 
rational surface due to 𝒌∥ = 𝟎 

 Radial mode structure: 
 Without parallel diffusion: smooth; 
 With Landau damping or flux 

limited heat flux: peaked at rational 
surfaces. 

Rational 
surface 

Non-rational 
surface 

Instability Strong  Weak 

Parallel 
damping 

Weak  Strong 

 The mismatch between instability 
and parallel damping reduces the 
efficiency of parallel damping 
stabilization on peeling-ballooning 
modes.   



Summary 
• In the presence of large density gradient, ion 

diamagnetic effect alone is not sufficient to 
represent FLR stabilizing on ballooning mode; 

• With gyroviscosity, gyrofluid and twofluid 
show good consistence on linear instability; 

• No saturation phase in isothermal limit with 
large density gradient; 

• Landau damping can reduce linear growth 
rate and change radial mode structure; 
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