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  Principal Results 
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Part one: two-fluid model 

(1) Fundamental model:  3-field  2-fluid model is a 

good enough model for P-B instability and ELM 

crashes. 

 

(2) Multi-field 2-fluid models are necessary to describe 

heat transport. 

 

(3) BOUT++ simulations show that bright stripes from 

visible camera on EAST match ELM filamentary 

structures. 

 

Part two: gyro-fluid model 

(1) First order FLR corrections from “gyro-viscous 

cancellation” in two-fluid model are necessary to 

agree  with gyro-fluid results for high ion 

temperature. 

 

(2) Higher ion temperature introduces more FLR 

stabilizing effects, thus reduces ELM size. 

 

 



  BOUT++ code for modeling tokamak edge ELMs and turbulence* 

 Framework for writing fluid / plasma 

simulations in complex tokamak 

geometry 

 Proximity of open+closed flux 

surface 

 Presence of X-point 

 

 Written in C++, started from BOUT code, 

jointly developed by LLNL, Univ. York, 

other U.S. and international partners 

 

 Well benchmarked with ELITE, GATO 

and other codes 

 

* X.Q. Xu and R.H. Cohen, Contrib. Plasma Phys. 38, 158 (1998) 

• Umansky, Xu, Dudson, et al., , Comp. Phys. Comm. V. 180 , 887-903 (2008).  

• Dudson, Umansky, Xu et al., Comp. Phys. Comm. V.180 (2009) 1467. 3 

X.Q. Xu, B.D. Dudson, P.B. Snyder, M.V. Umansky, 

H.R.Wilson and T. Casper, Nucl. Fusion 51 (2011) 103040 

0 5 10 15 20 25 30 35 40 45 50

with diamagnetic drift (BOUT++)

diamagnetic & ExB drift (BOUT++)

Ideal (BOUT++)

Ideal (ELITE)

Ideal (GATO)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Toroidal Mode Number (n)

Li
n

e
ar

 G
ro

w
th

 R
at

e
 (
γ/
ω

A
) 3-field model 

Toroidal mode number n 



    

This work was performed under the auspices of the U.S. DoE by LLNL under Contract DE-AC52-07NA27344 and is supported by the China NSF under Contract No.10721505, the National 
Magnetic Confinement Fusion Science Program of China under Contracts No. 2011GB107001. LLNL-PROC-583395. 

 T. Y. Xia1,2, X. Q. Xu2, Z. X. Liu1, S. C. Liu1, B. Gui1,2, W. Meyer2, G. Q. Li1 and J. G. Li1  
1Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China.  

2Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 

 

24th IAEA Fusion Energy Conference,  

8-13 Oct. 2012,San Diego, USA 

 

  
Multi-field two-fluid Peeling-Ballooning 

modes simulation with BOUT++ 
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Three-field (ϖ, P, A||): peeling-ballooning model. 
 

 Four-field (ϖ, P, A||, V||): include sound waves. 
 

 Five-field (ϖ, ni, Ti, Te, A||):  parallel thermal conductivities 
 

 Six-field (ϖ, ni, Ti, Te, A||, V||): combine all the models together, 
based on Braginskii equations, the density, momentum and 
energy of ions and electrons are described in drift ordering[1].  
 

[1]X. Q. Xu et al., Commun. Comput. Phys. 4, 949 (2008). 

Multi-field two-fluid model in BOUT++ 



      ELM crash in BOUT++ simulations 

EL
M

 s
iz

e
 

D
e

n
si

ty
  n

i 

(1
0

1
9
 m

-3
)   

Normalized Time (tA) 

Major radius R (m) Major radius R (m) 

Pressure Perturbation 𝑷  

Major radius R (m) 

V
e

rt
ic

al
 Z

(m
) 

El
e

ct
ro

n
 T

e
m

p
e

ra
tu

re
  

p
e

rt
u

rb
at

io
n

 
 (k

e
V

)   
 



    

Toroidal mode number n 

gr
o

w
th

 r
at

e
 (
γ/
ω

A
) 

 

  
Five-field model: low density leads to larger stabilizing effects by 

diamagnetic drifts, and density gradient drives larger ELM size  
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Density quantity affects linear growth 
rate through ω∗ ∝ 1/𝑛𝑖  

5-field 

With fixed pressure profile, ion density 
gradient leads to larger ELM size. 
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Thermal conductivities suppress the 
energy transport at inner boundary 

 Thermal conductivities with flux limited 
expressions suppress the increase of ELM 
size: 

Flux limited expression: 

Electron temperature is most  sensitive to κ||. 
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3-field  2-fluid model is good enough to simulate P-B stability 

and ELM crashes, additional physics from multi-field contributes 

less than 25% corrections 

Power depositions 

on PFCs. 

Turbulence and 
transport 

Toroidal mode number n 

G
ro

w
th

 r
at

e
 (
γ/
ω

A
) 

EL
M

 s
iz

e
 

Normalized Time (tA) 

15 
 
 

10 
 
 

5 
 
 

0 

EL
M

 s
iz

e
 (

%
) 

 Fundamental physics in ELMs:  
 Peeling-Ballooning instability 
 Ion diamagnetic stabilization  

 kinetic effect 
 Resistivity and hyper-resistivity  

 reconnection 

 Additional physics: 
• Ion acoustic waves 
• Thermal conductivities 
• Hall effect 
• Compressibility 
• Electron-ion friction 

change the linear 
growth rate less 
than 25%   



  

EAST#41019@3034ms 
Visible camera shows bright 

ELM structure$  

BOUT++ simulation shows 
that the ELM stripe are 
filamentary structures*  

  
BOUT++ simulations show that the stripes from visible 

camera match ELM filamentary structures 
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 Pitch match! 
 Mode number match!  



    EAST experiments verified BOUT++ predictions  

that low-n modes become dominant at high Ip 

BOUT++: 
 Higher current has 

lower n mode 

 

Qualitatively consist 
 

Z.X. Liu et al, Phys. Plasmas 19 102502 (2012). 
Z.X. Liu et al, EX/p7-11, “Study of ELMy H-mode plasmas and BOUT++ simulation on EAST” 
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  An isothermal electromagnetic 3-field gyro-fluid model 

 We derived an isothermal electromagnetic 3-field gyro-fluid model with 

vorticity formulation generalized from Snyder-Hammett gyro-fluid 

model [1] for edge plasmas. 

 

 Utilizing the Padé approximation for the modified Bessel functions, this 

set of gyro-fluid equations is implemented in the BOUT++ framework 

with full ion FLR effects, 

 

 In long-wavelength limit, this set of gyro-fluid equations is  reduced to 

previous 3-field two-fluid model with additional gyro-viscous terms 

resulting from the incomplete “gyro-viscous cancellation” in two-fluid 

model given by Xu et al [2].  

 

 Higher ion temperature introduces more FLR stabilizing effects, thus 

reduces ELM size. 

 

 

 

 

[1] P. B. Snyder and G. W. Hammett, Phys. Plasmas 8, 3199 (2001). 
[2] X. Q. Xu, R. H. Cohen, T. D. Rognlien, et.al., Phys. Plasma 7, 1951 (2000). 13 



  
In the presence of large density gradient, gyro-fluid and two-fluid 

model show qualitative difference when k
⊥
ρi is large 

 Two-fluid model: no stabilizing on 
high-n modes,  

 Gyro-fluid model: strong FLR 
stabilizing on high-n modes.  

Simple ion diamagnetic effect in 
two-fluid model is not sufficient to 
represent FLR stabilizing if density 
gradient is large! 

Consider the large density gradient 
at H-mode pedestal: 
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Gyroviscous terms are necessary to stabilize  

Ion-Density-Gradient modes, which appear in two-fluid model  

• Two-fluid  dispersion relation: 

• At long wavelength limit, gyro-fluid goes 
back to two-fluid but with additional 

gyroviscous terms 

Normalized flux y (radial direction)  

Normalized wavenumber (kqri)  



  
Higher ion temperature introduces more FLR stabilizing 

effects, thus reduces ELM size 

 Hyper-resistivity is necessary to ELM crash, but ELM size is weakly sensitive to hyper-resistivity; 
 With fixed pressure profile, high ion temperature introduce stronger FLR effect and thus leads to 

smaller ELM size 
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  Accurate non-Fourier methods for Landau-fluid operators 

Tokamak edge: 

 kinetic effects important -> need 

Landau-fluid (LF) operators  

 

 

 Large spatial inhomogeneities & 

complicated boundary 

 need non-Fourier implementation 

 Useful accurate approximation:  

 

 

 

 

 The new method has favorable Fourier-like 
computational scaling 

 The error is less than 1.5%. 



  Principal Results 
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Part one: two-fluid model 

(1) Fundamental model:  3-field  2-fluid model is a 

good enough model for P-B stability and ELM 

crashes. 

 

(2) High-n P-B mode is strongly stabilized at low 

density by diamagnetic drifts at low temperature.  

 

(3) BOUT++ simulations show that bright stripes from 

visible camera on EAST match ELM filamentary 

structures. 

 

Part two: gyro-fluid model 

(1) First order FLR corrections from “gyro-viscous 

cancellation” in two-fluid model are necessary to 

agree  with gyro-fluid results for high ion 

temperature. 

 

(2) Higher ion temperature introduces more FLR 

stabilizing effects, thus reduces ELM size. 

 

 




