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Motivation: self-consistent model for hyper-
resistivity based on MHD-ETG interaction

* Hyper-resistivity is demonstrated to play a crucial role in the
ELM dynamics

A\ n Numerical: Remove current sheet
| +@”¢ir =— LA“ S VL'A\l —>{ Physics: Hyper-resistive ballooning mode
Ly Reconnection

— Slmple estimation for hyper-resistivity is used in present
BOUT++ ELM simulations =2 not sufficient

— Classical: electron viscosity 7y « 1, ~ pivy = too small

— A Self-consistent model for hyper-resistivity is necessary to
determine the linear instability at H-mode pedestal and
ELM size

* A hyper-resistivity model is proposed based on the
MHD-ETG interaction theory*

*C. J. McDevitt and P. H. Diamond, Phys. Plasmas 13, 032302(2006)



Reduced MHD equation included ETG turbulence

e Ohm’s law with electron inertial
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MHD perturbation — ETG perturbation
Slow time variation Fast time variation

* Time average on MHD time scale
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Anomalous electron parallel
[5A\| , 5¢]> "‘ [5A\| , OP, ]>+ [5¢ ||e]> momentum transport due to ETG
turbulence
* Modulation of MHD perturbation on ETG turbulence
> Profile modification Tl, n = ‘5¢‘
» EXB shearing W\ —> Hyper-resistivity
> Field line bending (EM ETG) A\u = |54 nu —Relation between A, |,

and anomalous electron
parallel momentum transport

A. Sen, R. Singh, D. Chandra, P. Kaw and D. Raju, Nucl. Fusion 49 (2009) 115012



3+1 gyrofluid model for ITG/ETG
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* For simplicity, we utilize the gyrofluid model developed by P. Snyder and G. Hammett, but
for ETG simulations, the roles of electron and ion are interchanged

P. B. Snyder and G. W. Hammett, Phys. Plasmas 8, 3199 (2001).



3+1 gyrofluid model (Coun.)

eLandau closure - SR . :
. _ 8 ih |T| Landau-fluid operators is
q = "o ?E tl |k implemented based on a non-
5 g T Fourier methods developed by
G s & thLL A.Dimits, M.Umansky and |.Joseph
11 o[ Vil
m L (GP8.00114)

*Toroidal closure
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Benchmark: Cyclone ITG case
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* To be included

» Landau damping
» Toroidal closure

R (m)
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An isothermal electromagnetic 3-field gyro-fluid model

= We derived an isothermal electromagnetic 3-field gyro-fluid model with
vorticity formulation generalized from Snyder-Hammett gyro-fluid
model [1] for edge plasmas.

= Utilizing the Padé approximation for the modified Bessel functions, this
set of gyro-fluid equations is implemented in the BOUT++ framework
with full ion FLR effects,

* |n long-wavelength limit, this set of gyro-fluid equations is reduced to
previous 3-field two-fluid model with additional gyro-viscous terms
resulting from the incomplete “gyro-viscous cancellation” in two-fluid
model given by Xu et al [2].

= At nonlinear phase, gyrofluid sustains a strong n=0 EXB flow for much
longer time than twofluid;

» Higher temperature leads to smaller ELM crash

[1] P. B. Snyder and G. W. Hammett, Phys. Plasmas 8, 3199 (2001).
[2] X. Q. Xu, R. H. Cohen, T. D. Rognlien, et.al., Phys. Plasma 7, 1951 (2000).



3-field isothermal gyrofluid model* for ELM simulation: consider the
large density gradient at H-mode pedestal
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*) P. B. Snyder and G. W. Hammett, Phys. Plasmas 8, 3199 (2001)



In the presence of large density gradient, gyro-fluid and two-fluid
model show qualitative difference when k P is Iarge
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lon-Density-Gradient mode in twofluid model
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Gyroviscous terms are necessary to stabilize
lon-Density-Gradient modes and should be kept in twofluid model

Only ion diamagnetic effect in two-fluid model is not sufficient to represent FLR
stabilizing if density gradient is large!

e At long wavelength limit, gyro-fluid goes back to two-fluid but with additional
gyroviscous terms
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Gyroviscous terms represent
necessary FLR effect to stabilize
IDG modes and should be kept
in twofluid model

If without gyroviscous terms,
IDG mode will lead to much
larger ELM crash in nonlinear
phase
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Without gyroviscous terms, IDG mode leads to larger ELM crash and
more energy loss at nonlinear phase
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Twofluid and gyrofluid simulations show similar energy loss,
but different profile evolution during ELM crash

0.020 ' I T
- initial pressure
0.015k profile ]
(=W
g 2 ST Al f 0
’ E 0.010
= °r . E -
- - ’ . - O—& TF, coll
o b K twofluid, 1D ] S - > cotapse
- g gyrofluid, 1DE 0 008 TF, saturation
== :twofluid, 2D A L AA GLF, collapse
C ==== gyrofluid, 2D I
sRo P A T T GLF, saturation
o 100 200 00 400 500 0.000 s ' s | s . . | . . .
t 0.4 0.6 0.8 1.0 1.2
normalized Psi
* Definition of ELM size + Gyrofluid and twofluid has
= 1D: energy loss at outer mid-plane similar 2D ELM size but
= 2D: energy loss from whole cross-section different 1D ELM size
Roy —>different poloidal
ou .
AW j § dRd Q(PO — <P> ) perturbation structure
A ped __ JRi "+ Gyrofluid sustain different
ELM

W Rout profile after crash, but
ped . d Rd 6PO

finally also get relaxation.

in



frerrrrreT T rrrrrTrTTTTrTT ] 2T rrrrrrTTTTTTT]

i i t=100Ta: i t=150Ta |

gtW0f1UId 1 no EXBr shearing
s :;ﬁi 'F ' .
of o :
-1 -1F 3

‘pressure :
.perturbation ... . .

Egyrofluid tZIOOTaE strong ;EXB sheari t:150Ta§
—1F -1k .
—2E| P TR A | P —25| 2l Ll P

1 a 3 4 B 1 z 4 L

Twofluid shows no mode twist in poloidal direction, but gyrofluid
shows the perturbation is strongly twisted in poloidal direction

saturation

20 I

simitayrfinat— "

4




Gyrofluid sustains a strong n=0 EXB shear flow which leads to the
perturbation twist, but this flow is destroyed during the further profile

. relaxation process
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Energy losing process during one ELM event
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Higher ion temperature introduces more FLR stabilizing effects,
thus reduces ELM size (filament part)

® Hyper-resistivity is necessary to ELM crash, but ELM size is weakly sensitive to hyper-
resistivity;

® \With fixed pressure profile, high ion temperature introduce stronger FLR effect and thus
leads to smaller ELM size
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A primary comparison about the influence of isotopic on ELM
size between BOUT++ S|mulat|on and JT-60U experiment
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» initial crash is smaller (cannot be measured in experiments)
» Total energy loss is larger (consistent with JT-60U measurement)
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Conclusion

In the presence of large density gradient,
gyroviscosity is necessary to stabilize IDG
modes in twofluid model;

With gyroviscosity, gyrofluid and twofluid
show good consistence on linear instability;

Gyrofluid generates stronger n=0 EXB flow;

Higher temperature leads to smaller ELM
crash;



