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ETG turbulence simulation of tokamak edge 

plasmas via 3+1 gyrofluid code 
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Motivation: self-consistent model for hyper-
resistivity based on MHD-ETG interaction  

• Hyper-resistivity is demonstrated to play a crucial role in the 
ELM dynamics 

 
 
 

– Simple estimation for hyper-resistivity is used in present 
BOUT++ ELM simulations  not sufficient 

– Classical: electron viscosity                        too small 
– A Self-consistent model for hyper-resistivity is necessary to 

determine the linear instability at H-mode pedestal and 
ELM size  
 

• A hyper-resistivity model is proposed based on the 
MHD-ETG interaction theory* 
                         
 

*C. J. McDevitt and P. H. Diamond, Phys. Plasmas 13, 032302(2006) 
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Physics: Hyper-resistive ballooning mode 
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Reduced MHD equation included ETG turbulence 

• Ohm’s law with electron inertial 

MHD perturbation 
Slow time variation 

ETG perturbation 
Fast time variation 

Anomalous electron parallel 
momentum transport due to ETG 
turbulence 
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A. Sen, R. Singh, D. Chandra, P. Kaw and D. Raju, Nucl. Fusion 49 (2009) 115012 

• Time average on MHD time scale 

• Modulation of MHD perturbation on ETG turbulence 
 Profile modification  
 EXB shearing                    
 Field line bending (EM ETG) 
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3+1 gyrofluid model for ITG/ETG 

P. B. Snyder and G. W. Hammett, Phys. Plasmas 8, 3199 (2001). 

• For simplicity, we utilize the gyrofluid model developed by P. Snyder and G. Hammett, but 
for ETG simulations, the roles of electron and ion are interchanged   

• Definitions 
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3+1 gyrofluid model (Coun.)  
•Landau closure 

•Toroidal closure  

•Quasi-neutrality 

Landau-fluid operators is 
implemented based on a non-
Fourier methods developed by 
A.Dimits, M.Umansky and I.Joseph 

(GP8.00114)  
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Benchmark: Cyclone ITG case  

• To be included 
 Landau damping  
Toroidal closure  
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Gyro-fluid Simulations of  

Edge-Localized-Modes  
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 We derived an isothermal electromagnetic 3-field gyro-fluid model with 

vorticity formulation generalized from Snyder-Hammett gyro-fluid 

model [1] for edge plasmas. 

 

 Utilizing the Padé approximation for the modified Bessel functions, this 

set of gyro-fluid equations is implemented in the BOUT++ framework 

with full ion FLR effects, 

 

 In long-wavelength limit, this set of gyro-fluid equations is  reduced to 

previous 3-field two-fluid model with additional gyro-viscous terms 

resulting from the incomplete “gyro-viscous cancellation” in two-fluid 

model given by Xu et al [2].  

 

 At nonlinear phase, gyrofluid sustains a strong n=0 EXB flow for much 

longer time than twofluid; 

 

 Higher temperature leads to smaller ELM crash 

 

 

 

 

[1] P. B. Snyder and G. W. Hammett, Phys. Plasmas 8, 3199 (2001). 
[2] X. Q. Xu, R. H. Cohen, T. D. Rognlien, et.al., Phys. Plasma 7, 1951 (2000). 8 

An isothermal electromagnetic 3-field gyro-fluid model 
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*) P. B. Snyder and G. W. Hammett, Phys. Plasmas 8, 3199 (2001) 
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Relation between twofluid vorticity 
and gyrokinetic vorticity 

Padé approximation 

3-field isothermal gyrofluid model* for ELM simulation: consider the 
large density gradient at H-mode pedestal 
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 Two-fluid model: no stabilizing of 
high-n modes,  

 Gyro-fluid model: strong FLR 
stabilizing of high-n modes.  

Consider the large density gradient 
at H-mode pedestal: 

Normalized wavenumber (kqi)  

What causes the disappearance of stabilizing 
in twofluid model? 

Z (m) 

X (m) 

In the presence of large density gradient, gyro-fluid and two-fluid 
model show qualitative difference when k

⊥
ρi is large 
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Normalized flux y (radial direction)  

 The instability does not localize at peak 
pressure gradient region  

 Not pressure gradient driven 
      ballooning mode, but other instability 
 Lowest order ballooning equation changes 

 

 Ion diamagnetic effect stabilizes 
ballooning modes  first term decreases 

 Ion density gradient introduces  
      Ion-Density-Gradient mode: second 
      term become dominant  

When                increases: 

Twofluid local dispersion relation 

Ion-Density-Gradient mode in twofluid model 
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Gyroviscous terms are necessary to stabilize  
Ion-Density-Gradient modes and should be kept in twofluid model 

• At long wavelength limit, gyro-fluid goes back to two-fluid but with additional 

gyroviscous terms 

Normalized wavenumber (kqi)  

Only ion diamagnetic effect in two-fluid model is not sufficient to represent FLR 
stabilizing if density gradient is large! 

• Gyroviscous terms represent 
necessary FLR effect to stabilize 
IDG modes and should be kept 
in twofluid model 

• If without gyroviscous terms, 
IDG mode will lead to much 
larger ELM crash in nonlinear 
phase 
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Without gyroviscous terms, IDG mode leads to larger ELM crash and 
more energy loss at nonlinear phase 

ELM size:  0.06 ELM size:  0.13 

Pressure perturbation at ELM crash time 
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Twofluid and gyrofluid simulations show similar energy loss,  
but different profile evolution during ELM crash 

• Definition of ELM size 
 1D: energy loss at outer mid-plane 
 2D: energy loss from whole cross-section  
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• Gyrofluid and twofluid has 
similar 2D ELM size but 
different 1D ELM size  

   different poloidal  
       perturbation structure 
• Gyrofluid sustain different 

profile after crash, but 
finally also get relaxation.  
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Twofluid shows no mode twist in poloidal direction, but gyrofluid 
shows the perturbation is strongly twisted in poloidal direction 
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Gyrofluid sustains a strong n=0 EXB shear flow which leads to the 
perturbation twist, but this flow is destroyed during the further profile 

relaxation process 

Time evolution of n=0 Er at outer mid-plane 
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Energy losing process during one ELM event 

Linear phase Initial crash 

phase characteristic 

Linear 
phase 

Growing of various 
linear instabilities 

Initial 
crash 

 

• Reconnection 
• Formation of 

filaments 
• Energy loss 

carried by 
filaments(used 
in BOUT++) 

relaxation 

Turbulence 
transport, mainly 
EXB convection 

Saturation 

Total energy 
loss(measured in 
experiments) 

relaxation Saturation 
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Higher ion temperature introduces more FLR stabilizing effects, 

thus reduces ELM size (filament part) 

 Hyper-resistivity is necessary to ELM crash, but ELM size is weakly sensitive to hyper-
resistivity; 

 With fixed pressure profile, high ion temperature introduce stronger FLR effect and thus 
leads to smaller ELM size 

0.2 
 
 

0.15 
 
 

0.1 
 
 

0.05 
 
 

0 

EL
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iz

e
 

Ion temperature (keV) 
(Without density gradient in vorticity)  
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H.Urano, et.al. 24th IAET (San 
Diego) talk 

A primary comparison about the influence of isotopic on ELM 

size between BOUT++ simulation and JT-60U experiment 

BOUT++ simulation JT-60U experiment Qualitative 
agreement 

• With larger isotopic mass 
 initial crash is smaller (cannot be measured in experiments) 
 Total energy loss is larger (consistent with JT-60U measurement) 

 
19 



Conclusion 
• In the presence of large density gradient, 

gyroviscosity is necessary to stabilize IDG 
modes in twofluid model; 

• With gyroviscosity, gyrofluid and twofluid 
show good consistence on linear instability; 

• Gyrofluid generates stronger n=0 EXB flow; 

• Higher temperature leads to smaller ELM 
crash; 
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