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Gyro-Landau-Fluid Theory and 

Simulations of Edge-Localized-Modes 
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Principal Results 

2 

(1) First order FLR corrections from “gyro-

viscous cancellation” in two-fluid model 

are necessary to agree with gyro-fluid 

results for high ion temperature case 

with large density gradient. 

 

(2) Higher ion temperature introduces more 

FLR stabilizing effects, thus reduces 

ELM size. 

 

(3) Fundamental model:  3-field  2-fluid 

model captures the essential physics 

for P-B instability and early phase of 

ELM crashes. 

 

(4) Six-field simulations show that most 

energy lost via ion channel during an 

ELM event. 

 

(5) Developed accurate non-Fourier 

methods for Landau-fluid operators 
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Global EM gyrofluid simulation can bridge  

the kinetic and fluid regimes across separatrix 

• Edge Localized Modes (ELMs) are potential 

damaging to ITER divertor plates, and first walls 

 

• ELMs in tokamaks are sudden releases of particle 

and energy into the SOL, resulting in the eruption 

of filamentary structures from the plasma edge. 

 

• ELMs are believed to be triggered by the peeling-

ballooning (P-B) modes 

 

• P-B modes are ideal MHD modes which are 

destabilized by a combination of pressure 

gradients (ballooning) and currents in the  

      plasma edge (Peeling) 

– pedestal height 

 

• Global EM simulations across separatrix is a must: 

– micro-turbulence in hot H-mode pedestal 

pedestal width 

– power deposition on PFCs in the cold SOL 

QDT=10 

Ffus=500MW 

PSOL=100MW 

qmax=10MW/m2 

SOL  

width 
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KBM 

The successful KBM physics model in EPED* motivates electromagnetic 

gyro-kinetic calculations in real geometry 

 The EPED model predicts the H-mode pedestal height and 

width based upon two constraints:  

1) onset of non-local P-B modes at low to intermediate n,  
2) onset of nearly local KBM at high n.  
 

 Performed GYRO linear local gyrokinetic analysis of 

pressure scan of DIII-D discharge used in EPED study 

 

 Results for top of pedestal 

 ITG found to be dominant for kri< 1. At higher kri a 

micro-tearing mode is dominant 
 

 Results for the steep gradient region of the pedestal: 
 Two modes compete for dominance for kri< 1. One is 

in electron drift direction, other is ion. 

 KBM found in steep gradient region, roughly 

appearing where ideal ballooning theory predicts an 
onset. 

Frequency vs radius, kqrs =0.25  

The difficulty to run nonlinear global EM gyrokinetic codes across 

separatrix further motivates the global gyrofluid development. 

• BP8.00151: E Wang, et al, Gyrokinetic analysis of H-mode pedestals 

• JP8.00119: R. Bravenec, et al, Benchmarking of the Gyrokinetic Microstability Codes GYRO, GS2, and GEM 

 

E. Wang, Nucl. Fusion 52 (2012)  

*Snyder, Groebner, Leonard, Osborne, &         

Wilson, PoP16, 056118 (2009). 

Jerry Hughes, TI3.00003 , next talk 

ITG 

Top Peak Gradient 

e- mode 
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BOUT++ code is an ideal framework for gyrofluid extention 

for modeling tokamak edge ELMs and turbulence* 

 Framework for writing fluid / plasma 

simulations in complex tokamak geometry 

 Proximity of open+closed flux 

surface 

 Presence of X-point 

 

 Written in C++, started from BOUT code, 

jointly developed by LLNL, Univ. York, 

other U.S. and international partners 

 

 Well benchmarked with ELITE, GATO and 

other fluid codes 

 

 Extensions: new formulation for edge GLF 

models and GLF closures 

 

* X.Q. Xu and R.H. Cohen, Contrib. Plasma Phys. 38, 158 (1998) 

• Umansky, Xu, Dudson, et al., , Comp. Phys. Comm. V. 180 , 887-903 (2008).  

• Dudson, Umansky, Xu et al., Comp. Phys. Comm. V.180 (2009) 1467. 5 

X.Q. Xu, B.D. Dudson, P.B. Snyder, M.V. Umansky, 

H.R.Wilson and T. Casper, Nucl. Fusion 51 (2011) 103040 
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YI3.00003 : Bruce Cohen, BOUT Simulations 

of Drift Resistive Ballooning L-mode 

Turbulence in the Edge of the DIII-D Tokamak 

http://meeting.aps.org/Meeting/DPP12/SessionIndex2/?SessionEventID=181483
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An isothermal electromagnetic 3-field gyro-fluid model 

 We derived an isothermal electromagnetic 3-field 

gyro-fluid model with vorticity formulation 

generalized from Snyder-Hammett gyro-fluid 

model [1] for edge plasmas. 

 

 Utilizing the Padé approximation for the modified 

Bessel functions, this set of gyro-fluid equations 

is implemented in the BOUT++ framework with 

full ion FLR effects. 

 

 In long-wavelength limit, this set of gyro-fluid 

equations is reduced to previous 3-field two-fluid 

model with additional gyro-viscous terms 

resulting from the incomplete “gyro-viscous 

cancellation” in two-fluid model given by Xu [2].  

 

 Only simple ion diamagnetic effect in two-fluid 

model is not sufficient to represent FLR 

stabilizing if density gradient is large! 

 

 

 

 

[1] P. B. Snyder and G. W. Hammett, Phys. Plasmas 8, 3199 (2001). 
[2] X. Q. Xu, R. H. Cohen, T. D. Rognlien, et.al., Phys. Plasma 7, 1951 (2000). 6 

GP8.00117: S.S. Kim, et al, Core Gyrofluid Simulations of 

Ion Temperature Gradient Turbulence Using BOUT++. 

Excellent agreement of global ITG mode 
between BOUT++ and Eigenvalue Solver 
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3-field isothermal gyrofluid model* for ELM simulation  
generalized for the large density gradient at H-mode pedestal 

* P. B. Snyder and G. W. Hammett, Phys. Plasmas 8, 3199 (2001) 
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and gyrokinetic vorticity 

Padé approximation 
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TI3.00002 In the presence of large density gradient, gyro-fluid and two-fluid 
model show qualitative difference when k

⊥
ρi is large 

 Two-fluid model: no stabilizing of high-n modes,  
 Gyro-fluid model: strong FLR stabilizing of high-n modes. 
 What causes the disappearance of stabilizing in two-fluid model?  

Consider the large density gradient at H-mode pedestal, when ion temperature  : 

Normalized wavenumber (kqri)  

“IDG” 

GP8.00116: P.W. Xi, et al, Gyro-fluid Simulations of Edge-Localized-Modes    
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TI3.00002 Gyroviscous terms are necessary to stabilize  
“Ion-Density-Gradient modes” and should be kept in two-fluid model 

• At long wavelength limit, gyro-fluid goes back to two-fluid but with additional 

gyroviscous terms[1,2] 

Normalized wavenumber (kqri)  

• Only ion diamagnetic effect in 
two-fluid model is not sufficient 
to represent FLR stabilizing if 
density gradient is large! 
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[1] X.Q.Xu, et al, TH/5-2Rb, 24th IAEA FEC, 2012, San Diego, CA. 

[2] X.Q.Xu, et.al., Phys. Plasma 7, 1951 (2000). 
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Hyper-resistivity H is anomalous electron viscosity e 

Hyper-resistivity describes the anomalous radial transport of current 

• ELM dynamics is a multi-scale problem 

 

 meso-scale MHD                                   electron gyro-radius scale dissipation 

 

• Hyper-resistivity can be used to set the finest resolved radial scale in simulations 

 Ion FLR effect cannot replace hyper-resistivity   

 Dissipation in Ohm’s law does exist on e- scale for reconnection  

 classical e- viscosity is too small, e
cl ≈ neire

2<10-5m2/s 

 anomalous e- viscosity works, assuming e~ce ≈ 0.1-1 m2/s and nei 105, SH = 1012-14 

→ turbulent mixing 

→ stochastic fields 

 

 

 

 

 

• In our present model,  the frozen-in flux condition of ideal MHD theory is broken by 

  resistivity  

  hyper-resistivity. 

• The self-consistent ELM simulation needs the first principle theory of hyper-resistivity*   
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*Z. B. Guo, P. H. Diamond and X. G. Wang, 2012 ApJ 757, 173  

GP8.00116:  P.W. Xi, et al, ETG turbulence simulation of tokamak edge plasmas via 3+1 gyrofluid code 
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TI3.00002 Higher ion temperature introduces more FLR 

stabilizing effects, thus reduces ELM size 

 Hyper-resistivity is necessary to simulate ELM crash, but ELM size is weakly sensitive to hyper-resistivity; 

 With fixed pressure profile, high ion temperature introduces stronger FLR effect and leads to smaller ELM size 
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P. W. Xi, X. Q. Xu, X. G. Wang, and T. Y. Xia, Phys. Plasmas 19, 092503 (2012) 

Equilibrium EXB shear flow can stabilize high-n ballooning modes & reduce ELM size, 

 but additional Kelvin-Helmholtz drive can enhance growth rate of low-n modes 

and leads to larger ELM when flow shear is too large.  
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 Three-field (ϖ, P, A||): peeling-ballooning model. 

 

 Four-field (ϖ, P, A||, V||): include sound waves. 

 

 Five-field (ϖ, ni, Ti, Te, A||):  parallel thermal diffusivities 

 

 Six-field (ϖ, ni, Ti, Te, A||, V||): based on Braginskii 

equations, the density, momentum and energy of ions 

and electrons are described in drift ordering*.  

 nonlinear || thermal diffusivities 

 nonlinear resistivity 

 additional drift wave instabilities 

 

 

Multi-field two-fluid models in BOUT++ Guide GLF development 

 

Lundquist number profile 

Te,ped=3keV 

*X. Q. Xu et al., Commun. Comput. Phys. 4, 949 (2008). 

PO7.00005: T. Y. Xia, et al, Six-field two-fluid simulations on edge localized modes with BOUT++ 

Electron parallel thermal diffusivity profile 

Te,ped=3keV 

Flux limited expression: 

c||i c||e cfl,j 

c||j
e 

c||j cflj 

 || thermal diffusivities with flux limited 

expressions reduce ELM size: 

 GLF models for c||j are under development 

c||e 

cfl,j 
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The 3-field  2-fluid model is good enough to simulate 

P-B stability and early phase of ELM crashes,  

additional physics from multi-field contributes less than 25% corrections 

 Power loss via separate 

ion & electron channels 

 Power depositions on 

PFCs. 
 Turbulence and transport 
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 Fundamental physics in ELMs:  
 Peeling-Ballooning instability 
 Ion diamagnetic stabilization  

 kinetic effect 
 Resistivity and hyper-resistivity  

 reconnection 

 Additional physics: 
• Ion acoustic waves 
• || thermal conductivities 
• Hall effect 
• Compressibility 
• Electron-ion friction 

change the peak 
linear growth rate 
less than 25%   

BUT 



TI3.00002   
Six-field simulations show that most energy 

lost via ion channel during an ELM event 
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Higher density leads to large ELM size during an ELM event because of 

reduced parallel thermal conduction from lower temperature 

(Fixed pressure profile) 

During density scan 

 fixed profiles of the scale  

     lengths:  Ln, LTi, Lte 
 

 c||e  due to Te  , not nei  

Ti 

ni 

Te 

When density n     increases & temperature (Te,Ti     )  decreases           thermal 

diffusivity (c||i, c||e )    decreases & parallel damping decreases, the ELM 

encroaches further into core plasmas, which leads to larger ELM size   . 

  

   

Density Scan for c||e 

n/nG=1.2 

n/nG=0.64 

n/nG=0.26 

n/nG=0.13 
t=0 
t=∞ 

nG=Ip/πa2 
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Tokamak edge: 

 kinetic effects important → need 

 Landau-fluid (LF) operators 

 

 

 nonlocal || thermal transport q||j  

 

 Large spatial inhomogeneities & 

complicated boundary 

 need non-Fourier implementation 

 Useful accurate approximation:  

 

 

 

 

 The new method has Fourier-like 

computational scaling 

 The error is less than 1.5%. 

Developed accurate non-Fourier methods for  

Landau-fluid operators and nonlocal parallel heat transport  
based on an approximation by a sum of Lorentzians 

GP8.00114: A.M. Dimits, et al, Efficient Non-Fourier Implementation of Landau-Fluid Operators in the BOUT++ Code. 
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Nonlinear ELM simulations to be validated with fast 

pedestal, SOL, and divertor measurements from DIII-D 

using fundamental three-field two-fluid Model 

GP8.00085: M.E. Fenstermacher, et al, Validation of BOUT++ Nonlinear ELM 

Simulations Using Fast Measurements from DIII-D.  
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Four stages in ELM simulations: Linear P-B growth,  

nonlinear saturation, ELM crash & power deposition on PFCs 

• Simulated Stationary  
H-mode with Type-I 
ELMs of DIII-D 
Discharge 146394 in 
divertor geometry  

• Will compare 1D 2D 
and 3D snapshot data 
plus coherent profile 
reconstruction 

Time (tA
-1) 

20p>rms/B2 
SH=1013 

20P/B2(t=0) 

20P/B2 

t=0 

t=400tA 
t=610tA 

Normalized y 

nonlinear saturation 

ELM crahes 

linear P-B mode 
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Radial (m) 

Nonlinear simulations show the linear P-B mode growth,  
nonlinear saturation, ELM crash and power deposition on PFCs 

2 D 

1 D, midplane 

Calculated ELM size from BOUT++ simulations  

∆𝐸𝐿𝑀=
∆𝑊𝑝𝑒𝑑

𝑊𝑝𝑒𝑑
=
 𝑑y
1.0

0.9  𝑑q 𝑃0 − 𝑃 ζ

 𝑑y
1.0

0.9  𝑑q𝑃0
 

Time (tA) 

c||=1.0RvA 20P/B2 

movie 

t=0 

t=918tA 



TI3.00002 

Radial  index Radial  index 20p/B2 

Outer divertor plate Outer midplane Inner divertor plate 
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• Projections from BOUT++ n=25 linear mode  
— Periscope view will measure CIII 

              (Te=10 eV emission) 

Synthetic ECEI data from BOUT++ solution 

Future Work – Ongoing Validation of BOUT++ Non-Linear ELM Simulations  

Including ECEI and NEW Periscope Data 

IRTV image on the divertor target floor 
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Principal Results 
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(1) First order FLR corrections from “gyro-

viscous cancellation” in two-fluid model 

are necessary to agree with gyro-fluid 

results for high ion temperature case 

with large density gradient. 

 

(2) Higher ion temperature introduces more 

FLR stabilizing effects, thus reduces 

ELM size. 

 

(3) Fundamental model:  3-field  2-fluid 

model captures the essential physics 

for P-B instability and early phase of 

ELM crashes. 

 

(4) Six-field simulations show that most 

energy lost via ion channel during an 

ELM event. 

 

(5) Developed accurate non-Fourier 

methods for Landau-fluid operators 
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Additional related presentations at this APS DPP meeting 
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Another Invited talk 
 

Session YI3: Edge Turbulence: 9:30 AM–12:30 PM, Friday, November 2, 2012. Room: Ballroom BC. 

YI3.00003 : Bruce Cohen, BOUT Simulations of Drift Resistive Ballooning L-mode Turbulence in the Edge of the DIII-D Tokamak 

 

Posters: 
 

Session BP8: Poster Session I: 9:30 AM–12:30 AM, Monday, October 29, 2012. Room: Hall BC 

BP8.00036:Troy Carter,  et al,  Studies of Turbulence, Transport and Flow in the Large Plasma Device 

 

Session GP8: Poster Session III:  9:30 AM–9:30 AM, Tuesday, October 30, 2012. Room: Hall BC 

GP8.00085: M.E. Fenstermacher, et al, Validation of BOUT++ Nonlinear ELM Simulations Using Fast Measurements from DIII-D.  

GP8.00114: A.M. Dimits, et al, Efficient Non-Fourier Implementation of Landau-Fluid Operators in the BOUT++ Code. 

GP8.00116: P.W. Xi, et al,  ETG turbulence simulation of tokamak edge plasmas via 3+1 gyrofluid code 

GP8.00117: S.S. Kim, et al, Core Gyrofluid Simulations of Ion Temperature Gradient Turbulence Using BOUT++. 

GP8.00120: T. Rhee, et al, BOUT++ Simulations of ELMs with Four-Field Model 

GP8.00121: Z. H. Wang, et al, Simulations of Plasma Profile Evolution during SMBI using BOUT++ Code 

GP8.00115: C. H. Ma, et al., A upwind PPM with limiter for tokamak edge plasmas simulation under BOUT++ framework. 

GP8.00118: Minwoo Kim, et al, Comparison study between the observed ELM dynamics  

  in the KSTAR H-mode and simulation results from BOUT++ 

GP8.00122: Bin Gui, et al., Simulations of plasma responses due to RMP and external antenna with BOUT++ code 

GP8.00123: I Joseph, et al, Flute-reduced drift-MHD model for external magnetic perturbations using the BOUT++ code 

 

Session JP8: Poster Session IV: 2:00 PM–5:30 PM, Tuesday, October 30, 2012. Room: Hall BC 

JP8.00086: Evan Davis, et al, BOUT++ Simulations of Edge Turbulence in Alcator C-Mod's EDA H-Mode. 

JP8.00087: T. Golfinopoulos, et al,  Alcator C-Mod's Quasi-Coherent Mode Antenna: Experimental Results and Interpretation. 

 

Session PO7:  2:00 PM–4:24 PM, Wednesday, October 31, 2012. Room: 556AB 

PO7.00005: T. Y. Xia, et al, Six-field two-fluid simulations on edge localized modes with BOUT++ 

 

Session YP8: 9:30 AM–12:30 AM, Friday, November 2, 2012. Room: Hall BC 

YP8.00068 : Winston Frias,  et al, Simulation of gradient drift instabilities in Hall thruster plasmas with the BOUT++ code 

http://meeting.aps.org/Meeting/DPP12/SessionIndex2/?SessionEventID=176655
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BOUT++ simulations show that the stripes from 

visible camera match ELM filamentary structures  

EAST#41019@3034ms 

Visible camera shows bright 

ELM structure$  

BOUT++ simulation shows 

that the ELM stripe are 

filamentary structures*  
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$Photo by J. H. Yang 
*Figure by W.H. Meyer 

 Pitch angle match! 
 Mode number match!  

T. Y. Xia, X.Q. Xu, Z. X. Liu, et al, TH/5-2Ra,   

24th IEAE FEC, San Diego, CA, USA, 2012 


